Search results for: Non-productive time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6510

Search results for: Non-productive time

4800 Solid-State Bioconversion of Pineapple Residues into Kojic Acid by Aspergillus flavus: A Prospective Study

Authors: S. Nurashikin, E. Z. Rusley, A. Husaini

Abstract:

Kojic acid is an organic acid that is widely used as an ingredient for dermatological products, precursor for flavor enhancer and also as anti-inflammatory drug. The present study was undertaken to test the feasibility of pineapple residues as substrate for kojic acid production by Aspergillus flavus Link 44-1 via solid-state fermentation. The effect of initial moisture content, pH and incubation time on kojic acid fermentation was investigated. The best initial moisture content for kojic acid production from pineapple residues was observed at 70% (v/w) whereas initial culture pH 2.5 was identified to give high production of kojic acid. The optimal range of incubation time was identified between 8 and 14 days of incubation which corresponded to highest range of kojic acid produced. The results from this study pronounce the promising usability of pineapple residues as alternative substrate for kojic acid production by A. flavus Link 44-1.

Keywords: Aspergillus flavus, kojic acid, pineapple residues, solid state fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
4799 Clustering Based Formulation for Short Term Load Forecasting

Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha

Abstract:

A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

Keywords: Load forecasting, clustering, fuzzy inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
4798 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz

Abstract:

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.

Keywords: Handover, HetNets, MADM, small cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
4797 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
4796 Design of Extremum Seeking Control with PD Accelerator and its Application to Monod and Williams-Otto Models

Authors: Hitoshi Takata, Tomohiro Hachino, Masaki Horai, Kazuo Komatsu

Abstract:

In this paper, we are concerned with the design and its simulation studies of a modified extremum seeking control for nonlinear systems. A standard extremum seeking control has a simple structure, but it takes a long time to reach an optimal operating point. We consider a modification of the standard extremum seeking control which is aimed to reach the optimal operating point more speedily than the standard one. In the modification, PD acceleration term is added before an integrator making a principal control, so that it enables the objects to be regulated to the optimal point smoothly. This proposed method is applied to Monod and Williams-Otto models to investigate its effectiveness. Numerical simulation results show that this modified method can improve the time response to the optimal operating point more speedily than the standard one.

Keywords: Extremum seeking control, Monod model, Williams- Otto model, PD acceleration term, Optimal operating point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
4795 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
4794 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model

Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali

Abstract:

The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.

Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
4793 Modeling Ecological Responses of Some Forage Legumes in Iran

Authors: M. Keshavarzi

Abstract:

Grasslands of Iran are encountered with a vast desertification and destruction. Some legumes are plants of forage importance with high palatability. Studied legumes in this project are Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds were cultivated in research field of Kaboutarabad (33 km East of Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were cultivated in a split plot design with 3 replicate and two water treatments (weekly irrigation, and under stress with same amount per 15 days interval). Water entrance to each plots were measured by Partial flow. This project lasted 20 weeks. Destructive samplings (1m2 each time) were done weekly. At each sampling plants were gathered and weighed separately for each vegetative parts. An Area Meter (Vista) was used to measure root surface and leaf area. Total shoot and root fresh and dry weight, leaf area index and soil coverage were evaluated too. Dry weight was achieved in 750c oven after 24 hours. Statgraphic and Harvard Graphic software were used to formulate and demonstrate the parameters curves due to time. Our results show that Trifolium repens has affected 60 % and Medicago sativa 18% by water stress. Onobrychis total fresh weight was reduced 45%. Dry weight or Biomass in alfalfa is not so affected by water shortage. This means that in alfalfa fields we can decrease the irrigation amount and have some how same amount of Biomass. Onobrychis show a drastic decrease in Biomass. The increases in total dry matter due to time in studied plants are formulated. For Trifolium repens if removal or cattle entrance to meadows do not occurred at perfect time, it will decrease the palatability and water content of the shoots. Water stress in a short period could develop the root system in Trifolium repens, but if it last more than this other ecological and soil factors will affect the growth of this plant. Low level of soil water is not so important for studied legume forges. But water shortage affect palatability and water content of aerial parts. Leaf area due to time in studied legumes is formulated. In fact leaf area is decreased by shortage in available water. Higher leaf area means higher forage and biomass production. Medicago and Onobrychis reach to the maximum leaf area sooner than Trifolium and are able to produce an optimum soil cover and inhibit the transpiration of soil water of meadows. Correlation of root surface to Total biomass in studied plants is formulated. Medicago under water stress show a 40% decrease in crown cover while at optimum condition this amount reach to 100%. In order to produce forage in areas without soil erosion Medicago is the best choice even with a shortage in water resources. It is tried to represent the growth simulation of three famous Forage Legumes. By growth simulation farmers and range managers could better decide to choose best plant adapted to water availability without designing different time and labor consuming field experiments.

Keywords: Ecological parameters, Medicago, Onobrychis, Trifolium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
4792 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control

Authors: Vivekanandan C., Prabhakar .R., Prema D.

Abstract:

This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presented

Keywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
4791 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames

Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan

Abstract:

The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.

Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
4790 Optimal Maintenance Policy for a Partially Observable Two-Unit System

Authors: Leila Jafari, Viliam Makis, Akram Khaleghei G.B.

Abstract:

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.

Keywords: Condition-Based Maintenance, Semi-Markov Decision Process, Multivariate Bayesian Control Chart, Partially Observable System, Two-unit System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
4789 Tree Based Data Aggregation to Resolve Funneling Effect in Wireless Sensor Network

Authors: G. Rajesh, B. Vinayaga Sundaram, C. Aarthi

Abstract:

In wireless sensor network, sensor node transmits the sensed data to the sink node in multi-hop communication periodically. This high traffic induces congestion at the node which is present one-hop distance to the sink node. The packet transmission and reception rate of these nodes should be very high, when compared to other sensor nodes in the network. Therefore, the energy consumption of that node is very high and this effect is known as the “funneling effect”. The tree based-data aggregation technique (TBDA) is used to reduce the energy consumption of the node. The throughput of the overall performance shows a considerable decrease in the number of packet transmissions to the sink node. The proposed scheme, TBDA, avoids the funneling effect and extends the lifetime of the wireless sensor network. The average case time complexity for inserting the node in the tree is O(n log n) and for the worst case time complexity is O(n2).

Keywords: Data Aggregation, Funneling Effect, Traffic Congestion, Wireless Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
4788 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, surface runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
4787 Acceleration Analysis of a Rotating Body

Authors: R. Usubamatov

Abstract:

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Keywords: acceleration analysis, kinematics of mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
4786 Improvement of GVPI Insulation System Characteristics by Curing Process Modification

Authors: M. Shadmand

Abstract:

The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. 

Keywords: Insulation system, GVPI, PDC, aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
4785 Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Authors: Tse-Yu Hsieh, Jyh-Jian Chen

Abstract:

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Keywords: Polymerase chain reaction, oscillatory thermal cycler, standard deviation of temperature, nature convective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
4784 Evaluation of Curriculum Quality of Postgraduate Studies of Actuarial Science Field at Public Universities of Iran

Authors: F. Havas Beigi, M. Vafaee Yeganeh, E. Mohammadi

Abstract:

Evaluation and survey of curriculum quality as one of the most important components of universities system is necessary for different levels in higher education. The main purpose of this study was to survey of the curriculum quality of Actuarial science field. Case: University of SHahid Beheshti and Higher education institute of Eco insurance (according to viewpoint of students, alumni, employers and faculty members). Descriptive statistics (mean, tables, percentage, and frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criteria considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. Content, teaching and learning methods, space and facilities, assessment of learning criteria were relatively desirable level, objectives and time criterions were desirable level. The quality of curriculum of Actuarial Science field was relatively desirable level.

Keywords: Quality, curriculum, Actuarial science, higher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
4783 Shadow Imaging Study of Z-Pinch Dynamic Hohlraum

Authors: Chen Faxin, Feng Jinghua, Yang Jianlun, Li Linbo, Zhou Lin

Abstract:

In order to obtaining the dynamic evolution image of Tungsten array for foam padding, and to research the form of interaction between Tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266nm)has been designed on 1MA pulse power device. The time resolution of the system is 2.5ns, and static space resolution is superior to 70μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction of the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction of Tungsten plasma and foam in a form of “Raining" within a time of about 50ns, the plasma shell structure has not been found in the whole period of pinch. The quantitative analysis indicates the minimum pinching speed of the foam column is 1.0×106cm/s, and maximum pinching speed is 6.0×106cm/s, and the axial stagnation diameter is approx 1mm.

Keywords: Dynamic hohlraum, Shadowgraphy image, Foam evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
4782 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
4781 A Two-Phase Mechanism for Agent's Action Selection in Soccer Simulation

Authors: Vahid Salmani, Mahmoud Naghibzadeh, Farid Seifi, Amirhossein Taherinia

Abstract:

Soccer simulation is an effort to motivate researchers and practitioners to do artificial and robotic intelligence research; and at the same time put into practice and test the results. Many researchers and practitioners throughout the world are continuously working to polish their ideas and improve their implemented systems. At the same time, new groups are forming and they bring bright new thoughts to the field. The research includes designing and executing robotic soccer simulation algorithms. In our research, a soccer simulation player is considered to be an intelligent agent that is capable of receiving information from the environment, analyze it and to choose the best action from a set of possible ones, for its next move. We concentrate on developing a two-phase method for the soccer player agent to choose its best next move. The method is then implemented into our software system called Nexus simulation team of Ferdowsi University. This system is based on TsinghuAeolus[1] team that was the champion of the world RoboCup soccer simulation contest in 2001 and 2002.

Keywords: RoboCup, Soccer simulation, multi-agent environment, intelligent soccer agent, ball controller agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
4780 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
4779 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms

Authors: Amir Hossein Daei Sorkhabi, Bita Khazini

Abstract:

In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.

Keywords: Automatic Carwash, Dimension, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6781
4778 An Analysis of Dynamic Economic Dispatch Using Search Space Reduction Based Gravitational Search Algorithm

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper presents the performance analysis of dynamic search space reduction (DSR) based gravitational search algorithm (GSA) to solve dynamic economic dispatch of thermal generating units with valve point effects. Dynamic economic dispatch basically dictates the best setting of generator units with anticipated load demand over a definite period of time. In this paper, the presented technique is considered that deals an inequality constraints treatment mechanism known as DSR strategy to accelerate the optimization process. The presented method is demonstrated through five-unit test systems to verify its effectiveness and robustness. The simulation results are compared with other existing evolutionary methods reported in the literature. It is intuited from the comparison that the fuel cost and other performances of the presented approach yield fruitful results with marginal value of simulation time.

Keywords: Dynamic economic dispatch, dynamic search space reduction strategy, gravitational search algorithm, ramp rate limits, valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
4777 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
4776 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal

Abstract:

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.

Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
4775 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
4774 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs

Authors: G. C. Mahata, A. Goswami

Abstract:

This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with  stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number  (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering  cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.

Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
4773 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic

Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad

Abstract:

This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.

Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3449
4772 A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case

Authors: Leena Sharma

Abstract:

Chemical reaction and diffusion are important phenomena in quantitative neurobiology and biophysics. The knowledge of the dynamics of calcium Ca2+ is very important in cellular physiology because Ca2+ binds to many proteins and regulates their activity and interactions Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. A mathematical model has been developed for calcium waves by assuming the buffers are in equilibrium with calcium i.e., the rapid buffering approximation for a one dimensional unsteady state case. This model incorporates important physical and physiological parameters like dissociation rate, diffusion rate, total buffer concentration and influx. The finite difference method has been employed to predict [Ca2+] and buffer concentration time course regardless of the calcium influx. The comparative studies of the effect of the rapid buffered diffusion and kinetic parameters of the model on the concentration time course have been performed.

Keywords: Calcium Profile, Rapid Buffering Approximation, Influx, Dissociation rate constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
4771 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Ammonium chloride, Chevreul’s salt, copper, Factorial experimental design method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649