Search results for: continuous time domain estimation
6689 Grid Artifacts Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.
Keywords: Computed radiography, grid artifacts, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42966688 A Novel Steganographic Method for Gray-Level Images
Authors: Ahmad T. Al-Taani, Abdullah M. AL-Issa
Abstract:
In this work we propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by dividing the cover into blocks of equal sizes and then embeds the message in the edge of the block depending on the number of ones in left four bits of the pixel. The proposed approach is tested on a database consists of 100 different images. Experimental results, compared with other methods, showed that the proposed approach hide more large information and gave a good visual quality stego-image that can be seen by human eyes.Keywords: Data Embedding, Cryptography, Watermarking, Steganography, Least Significant Bit, Information Hiding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22736687 An Optimized Multi-block Method for Turbulent Flows
Authors: M. Goodarzi, P. Lashgari
Abstract:
A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15706686 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11616685 Use of Magnesium as a Renewable Energy Source
Authors: Rafayel K. Kostanyan
Abstract:
The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.
Keywords: Magnesium, power generation, production, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20236684 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11866683 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame
Authors: Seyed Saeid Tabaee, Omid Bahar
Abstract:
Nowadays, energy dissipation devices are commonly used in structures. High rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements, specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely make analysis and design process complicated. This effect may be generally represented by Equivalent Viscous Damping (EVD). The equivalent viscous damping might be obtained from the expected hysteretic behavior regarding to the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel Moment Resisting Frame (MRF), which its performance is enhanced by a Buckling Restrained Brace (BRB) system has been evaluated. Having foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural system frequency. Two MRF structures, one equipped with BRB and the other without BRB are simultaneously studied. Extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.Keywords: Buckling restrained brace, Direct displacement based design, Dual systems, Hysteretic damping, Moment resisting frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24806682 Application of a SubIval Numerical Solver for Fractional Circuits
Authors: Marcin Sowa
Abstract:
The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.Keywords: Numerical method, SubIval, fractional calculus, numerical solver, circuit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6856681 A Look at the History of Calligraphy in Decoration of Mosques in Iran: 630-1630 AD
Authors: Cengiz Tavşan, Niloufar Akbarzadeh
Abstract:
Architecture in Iran has a continuous history from at least 5000 BC to the present, and numerous Iranian pre-Islamic elements have contributed significantly to the formation of Islamic art. At first, decoration was limited to small objects and containers and then progressed in the art of plaster and brickwork. They later applied in architecture as well. The art of gypsum and brickwork, which was prevalent in the form of motifs (animals and plants) in pre-Islam, was used in the aftermath of Islam with the art of calligraphy in decorations. The splendor and beauty of Iranian architecture, especially during the Islamic era, are related to decoration and design. After the invasion of Iran by the Arabs and the introduction of Islam to Iran, the arrival of the Iranian classical architecture significantly changed, and we saw the Arabic calligraphy decoration of the mosques in Iran. The principles of aesthetics in the art of calligraphy in Iran are based precisely on the principles of the beauty of ancient Iranian and Islamic art. On the other hand, after Islam, calligraphy was one of the most important sources of Islamic art in Islam and one of the important features of Islamic culture. First, the calligraphy had no cultural meaning and was only for decoration and beautification, it had the same meaning only in the inscriptions; however, over time, it became meaningful. This article provides a summary of the history of calligraphy in the mosques (from the entrance to Islam until the Safavid period), which cannot ignore the role of the calligraphy in their decorative ideas; and also, the important role that decorative elements play in creating a public space in terms of social and aesthetic performance. This study was conducted using library studies and field studies. The purpose of this study is to show the characteristics of architecture and art of decorations in Iran, especially in the mosque's architecture, which reaches the pinnacle of progress. We will see that religious beliefs and artistic practices are merging and trying to bring a single concept.Keywords: Islamic art, Islamic architecture, decorations in Iranian mosques, calligraphy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22046680 An Improved Algorithm of SPIHT based on the Human Visual Characteristics
Authors: Meng Wang, Qi-rui Han
Abstract:
Because of excellent properties, people has paid more attention to SPIHI algorithm, which is based on the traditional wavelet transformation theory, but it also has its shortcomings. Combined the progress in the present wavelet domain and the human's visual characteristics, we propose an improved algorithm based on human visual characteristics of SPIHT in the base of analysis of SPIHI algorithm. The experiment indicated that the coding speed and quality has been enhanced well compared to the original SPIHT algorithm, moreover improved the quality of the transmission cut off.Keywords: Lifted wavelet transform, SPIHT, Human Visual Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15386679 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32396678 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18846677 Customer Churn Prediction: A Cognitive Approach
Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka
Abstract:
Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.
Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25696676 Scale Time Offset Robust Modulation (STORM) in a Code Division Multiaccess Environment
Authors: David M. Jenkins Jr.
Abstract:
Scale Time Offset Robust Modulation (STORM) [1]– [3] is a high bandwidth waveform design that adds time-scale to embedded reference modulations using only time-delay [4]. In an environment where each user has a specific delay and scale, identification of the user with the highest signal power and that user-s phase is facilitated by the STORM processor. Both of these parameters are required in an efficient multiuser detection algorithm. In this paper, the STORM modulation approach is evaluated with a direct sequence spread quadrature phase shift keying (DS-QPSK) system. A misconception of the STORM time scale modulation is that a fine temporal resolution is required at the receiver. STORM will be applied to a QPSK code division multiaccess (CDMA) system by modifying the spreading codes. Specifically, the in-phase code will use a typical spreading code, and the quadrature code will use a time-delayed and time-scaled version of the in-phase code. Subsequently, the same temporal resolution in the receiver is required before and after the application of STORM. In this paper, the bit error performance of STORM in a synchronous CDMA system is evaluated and compared to theory, and the bit error performance of STORM incorporated in a single user WCDMA downlink is presented to demonstrate the applicability of STORM in a modern communication system.Keywords: Pseudonoise coded communication, Cyclic codes, Code division multiaccess
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16366675 Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.
Keywords: ZnO thin films, sol-gel, photocatalysis, aging time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24606674 Performance and Availability Analyses of PV Generation Systems in Taiwan
Authors: H. S. Huang, J. C. Jao, K. L. Yen, C. T. Tsai
Abstract:
The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.Keywords: availability, performance ratio, PV system, Taiwan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44496673 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16156672 Development of an Autonomous Greenhouse Gas Monitoring System
Authors: Breda M. Kiernan, Cormac Fay, Stephen Beirne, Dermot Diamond
Abstract:
This paper describes the designs of a first and second generation autonomous gas monitoring system and the successful field trial of the final system (2nd generation). Infrared sensing technology is used to detect and measure the greenhouse gases methane (CH4) and carbon dioxide (CO2) at point sources. The ability to monitor real-time events is further enhanced through the implementation of both GSM and Bluetooth technologies to communicate these data in real-time. These systems are robust, reliable and a necessary tool where the monitoring of gas events in real-time are needed.Keywords: Environmental monitoring, infrared sensing, autonomous system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22586671 A Numerical Model for Studying Convectional Lifting Processes in the Tropics
Authors: Chantawan Noisri, Robert Harold Buchanan Exell
Abstract:
A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.Keywords: Numerical weather prediction, Finite differences, Convection lifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12986670 HERMES System: a Virtual Reality Simulator for the Angioplasty Intervention Training
Authors: Giovanni Aloisio, Lucio T. De Paolis, Luciana Provenzano, Lucio Colizzi, Gianluca Pantile
Abstract:
One of the essential requirements in order to have a realistic surgical simulator is real-time interaction by means of a haptic interface is. In fact, reproducing haptic sensations increases the realism of the simulation. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the user immersion. In this paper, we present a prototype of the coronary stent implant simulator developed in the HERMES Project; this system allows real-time interactions with a artery by means of a specific haptic device; thus the user can interactively navigate in a reconstructed artery and force feedback is produced when contact occurs between the artery walls and the medical instrumentsKeywords: Collision Detection, Haptic Interface, Real-Time Interaction, Surgical Simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20736669 An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach
Authors: N. Z. A. Hamid, M. S. M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.
Keywords: Chaotic approach, phase space, Cao method, local linear approximation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17906668 Mounting Time Reduction using Content-Based Block Management for NAND Flash File System
Authors: Won-Hee Cho, GeunHyung Lee, Deok-Hwan Kim
Abstract:
The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. The YAFFS, one of the NAND flash file system, is widely used in the embedded device. However, the existing YAFFS takes long time to mount the file system because it scans whole spare areas in all pages of NAND flash memory. In order to solve this problem, we propose a new content-based flash file system using a mounting time reduction technique. The proposed method only scans partial spare areas of some special pages by using content-based block management. The experimental results show that the proposed method reduces the average mounting time by 87.2% comparing with JFFS2 and 69.9% comparing with YAFFS.
Keywords: NAND Flash Memory, Mounting Time, YAFFS, JFFS2, Content-based Block management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16876667 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems
Authors: Semih Demir, Anil Celebi
Abstract:
Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.
Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14806666 Self-Organization of Clusters having Locally Distributed Patterns for Synchronized Inputs
Authors: Toshio Akimitsu, Yoichi Okabe, Akira Hirose
Abstract:
Many experimental results suggest that more precise spike timing is significant in neural information processing. We construct a self-organization model using the spatiotemporal patterns, where Spike-Timing Dependent Plasticity (STDP) tunes the conduction delays between neurons. We show that the fluctuation of conduction delays causes globally continuous and locally distributed firing patterns through the self-organization.Keywords: Self-organization, synfire-chain, Spike-Timing Dependent Plasticity, distributed information representation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12376665 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11066664 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study
Authors: Chee Peng Lim, Wei Yee Goh
Abstract:
In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.
Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16996663 EnArgus: A Knowledge-Based Search Application for Energy Research Projects
Authors: Frederike Ohrem, Lukas Sikorski, Bastian Haarmann
Abstract:
Often the users of a semantic search application are facing the problem that they do not find appropriate terms for their search. This holds especially if the data to be searched is from a technical field in which the user does not have expertise. In order to support the user finding the results he seeks, we developed a domain-specific ontology and implemented it into a search application. The ontology serves as a knowledge base, suggesting technical terms to the user which he can add to his query. In this paper, we present the search application and the underlying ontology as well as the project EnArgus in which the application was developed.
Keywords: Information system, knowledge representation, ontology, semantic search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17366662 Retaining Structural System Active Vibration Control
Authors: Ming-Hui Lee, Shou-Jen Hsu
Abstract:
This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.Keywords: Active vibration control, AIEM, LQG, Optimal control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18776661 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.
Keywords: Adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21286660 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages
Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh
Abstract:
Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.
Keywords: Chickpea, drought stress, growth stage, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003