Search results for: Image Mining
398 A Study on Websites of Public and Private Hospitals in Konya
Authors: H. Nur Gorkemli, Mehmet Fidan
Abstract:
After the first acquaintance with internet in April 1993, number of internet users increased rapidly in Turkey. Almost half of the population between 16-74 age group use internet in the country. Hospitals are one of the areas where the internet is intensively being used like many other businesses. As a part of public relations application, websites are important tools for hospitals to reach a wide range of target audience within and outside the organization. With their websites, hospitals have opportunities to give information about their organization, strengthen their image, compete with their rivals, interact with shareholders, reflect their transparency and meet with new audiences. This study examines web sites of totally 34 hospitals which are located in Konya. Institutions are categorized as public and private hospitals and then three main research categories are determined: content, visual and technical. Main and sub categories are examined by using content analysis method. Results are interpreted in scope of public and private institutions and as a whole.
Keywords: Health Communication, Hospital, Internet, Webpages, Websites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646397 Signal-to-Noise Ratio Improvement of EMCCD Cameras
Authors: Wen W. Zhang, Qian Chen, Bei B. Zhou, Wei J. He
Abstract:
Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.Keywords: EMCCD, SNR improvement, pixel binning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874396 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496395 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: Clustering, edges, feature points, landmark selection, X-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818394 Performance Evaluation of ROI Extraction Models from Stationary Images
Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad
Abstract:
In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.Keywords: clustering, ROI, saliency, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409393 An Automated Method to Segment and Classify Masses in Mammograms
Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham
Abstract:
Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.Keywords: classification, computer-aided detection, featureextraction, mass detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657392 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435391 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition
Authors: M. Hassan, I. Osman, M. Yahia
Abstract:
This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.
Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571390 Land Surface Temperature and Biophysical Factors in Urban Planning
Authors: Illyani Ibrahim, Azizan Abu Samah, Rosmadi Fauzi
Abstract:
Land surface temperature (LST) is an important parameter to study in urban climate. The understanding of the influence of biophysical factors could improve the establishment of modeling urban thermal landscape. It is well established that climate hold a great influence on the urban landscape. However, it has been recognize that climate has a low priority in urban planning process, due to the complex nature of its influence. This study will focus on the relatively cloud free Landsat Thematic Mapper image of the study area, acquired on the 2nd March 2006. Correlation analyses were conducted to identify the relationship of LST to the biophysical factors; vegetation indices, impervious surface, and albedo to investigate the variation of LST. We suggest that the results can be considered by the stackholders during decision-making process to create a cooler and comfortable environment in the urban landscape for city dwellers.Keywords: Biophysical factors, land surface temperature, urban planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086389 The Role of the Indigenous Languages in Policy Planning and Implementation: A Sociolinguistic Appraisal of the National Rebranding Programme of Nigeria
Authors: Anayochukwu Leonard Okoli
Abstract:
The nexus between language and culture is so intertwined and very significant that language is largely seen as a vehicle for cultural transmission. Culture itself refers to the aggregate belief system of a people, embellishing its corporate national image or brand. If we conceive national rebranding as a campaign to rekindle the patriotic flame in the consciousness of a people towards its sociocultural imperatives and values, then, Nigerian indigenous linguistic flame has not been ignited. Consequently, the paper contends that the current national rebranding policy remains a myth in the confines of the elitists' intellectual squabble. It however recommends that the use of our indigenous languages should be supported by adequate legislation and also propagated by Nollywood in order to revamp and sustain the people’s interest in their local languages. Finally, the use of the indigenous Nigerian languages demonstrates patriotism, an important ingredient for actualizing a genuine national rebranding.
Keywords: Appraisal, Indigenous Languages, Policy, Rebranding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843388 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745387 Predicting Individual Investors- Intention to Invest: An Experimental Analysis of Attitude as a Mediator
Authors: Azwadi Ali
Abstract:
The survival of publicly listed companies largely depends on their stocks being liquidly traded. This goal can be achieved when new investors are attracted to invest on companies- stocks. Among different groups of investors, individual investors are generally less able to objectively evaluate companies- risks and returns, and tend to be emotionally biased in their investing decisions. Therefore their decisions may be formed as a result of perceived risks and returns, and influenced by companies- images. This study finds that perceived risk, perceived returns and trust directly affect individual investors- trading decisions while attitude towards brand partially mediates the relationships. This finding suggests that, in courting individual investors, companies still need to perform financially while building a good image can result in their stocks being accepted quicker than the stocks of good performing companies with hidden images.Keywords: Behavioral Finance, Investment, Attitude towardsBrand, Partial Least Squares
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603386 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network
Authors: Hamid Reza Boveiri
Abstract:
In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725385 Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER
Authors: Yu-Shuai Chen , Chien-Ching Chiu , Chung-Hsin Huang, Chien-Hung Chen
Abstract:
The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.Keywords: UWB, multipath, outage probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431384 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461383 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time
Authors: Francisco Bulnes
Abstract:
Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, spectrum of ring, topological quantum diffeomorphisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005382 A Review in Advanced Digital Signal Processing Systems
Authors: Roza Dastres, Mohsen Soori
Abstract:
Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038381 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371380 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222379 Deterministic Random Number Generators for Online Applications
Authors: Natarajan Vijayarangan, Prasanna S. Bidare
Abstract:
Cryptography, Image watermarking and E-banking are filled with apparent oxymora and paradoxes. Random sequences are used as keys to encrypt information to be used as watermark during embedding the watermark and also to extract the watermark during detection. Also, the keys are very much utilized for 24x7x365 banking operations. Therefore a deterministic random sequence is very much useful for online applications. In order to obtain the same random sequence, we need to supply the same seed to the generator. Many researchers have used Deterministic Random Number Generators (DRNGs) for cryptographic applications and Pseudo Noise Random sequences (PNs) for watermarking. Even though, there are some weaknesses in PN due to attacks, the research community used it mostly in digital watermarking. On the other hand, DRNGs have not been widely used in online watermarking due to its computational complexity and non-robustness. Therefore, we have invented a new design of generating DRNG using Pi-series to make it useful for online Cryptographic, Digital watermarking and Banking applications.
Keywords: E-tokens, LFSR, non-linear, Pi series, pseudo random number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009378 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470377 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.
Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094376 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908375 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo
Authors: Patrick May Mukonki
Abstract:
KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.
Keywords: Mine planning, mine optimization, mine scheduling, SWOT analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589374 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.
Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367373 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: Malware detection, network security, targeted attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6107372 Processor Scheduling on Parallel Computers
Authors: Mohammad S. Laghari, Gulzar A. Khuwaja
Abstract:
Many problems in computer vision and image processing present potential for parallel implementations through one of the three major paradigms of geometric parallelism, algorithmic parallelism and processor farming. Static process scheduling techniques are used successfully to exploit geometric and algorithmic parallelism, while dynamic process scheduling is better suited to dealing with the independent processes inherent in the process farming paradigm. This paper considers the application of parallel or multi-computers to a class of problems exhibiting spatial data characteristic of the geometric paradigm. However, by using processor farming paradigm, a dynamic scheduling technique is developed to suit the MIMD structure of the multi-computers. A hybrid scheme of scheduling is also developed and compared with the other schemes. The specific problem chosen for the investigation is the Hough transform for line detection.Keywords: Hough transforms, parallel computer, parallel paradigms, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650371 Traceable Watermarking System using SoC for Digital Cinema Delivery
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
As the development of digital technology is increasing, Digital cinema is getting more spread. However, content copy and attack against the digital cinema becomes a serious problem. To solve the above security problem, we propose “Additional Watermarking" for digital cinema delivery system. With this proposed “Additional watermarking" method, we protect content copyrights at encoder and user side information at decoder. It realizes the traceability of the watermark embedded at encoder. The watermark is embedded into the random-selected frames using Hash function. Using it, the embedding position is distributed by Hash Function so that third parties do not break off the watermarking algorithm. Finally, our experimental results show that proposed method is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip and additional watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685370 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance
Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab
Abstract:
Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.
Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156369 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.
Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478