Search results for: soil–machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2082

Search results for: soil–machine

432 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
431 Facilitating a Cyber-Enabled Fraud Using the O.MG Cable to Incriminate the Victim

Authors: Damola O. Lawal, David W. Gresty, Diane E. Gan, Louise Hewitt

Abstract:

This paper investigates the feasibility of using a programmable USB such as the O.MG Cable to perform a file tampering attack. Here, the O.MG Cable, an apparently harmless mobile device charger is used in an unauthorised way, to alter the content of a file (an accounts record-January_Contributions.xlsx). The aim is to determine if a forensics analyst can reliably determine who has altered the target file; the O.MG Cable or the user of the machine. This work highlights some of the traces of the O.MG Cable left behind on the target computer itself such as the Product ID (PID) and Vendor ID (ID). Also discussed is the O.MG Cable’s behaviour during the experiments. We determine if a forensics analyst could identify if any evidence has been left behind by the programmable device on the target file once it has been removed from the computer to establish if the analyst would be able to link the traces left by the O.MG Cable to the file tampering. It was discovered that the forensic analyst might mistake the actions of the O.MG Cable for the computer users. Experiments carried out in this work could further the discussion as to whether an innocent user could be punished for the unauthorised changes made by a programmable device.

Keywords: O.MG Cable, programmable USB, file tampering attack, digital evidence credibility, miscarriage of justice, cyber fraud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
430 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves

Authors: Alicia Heraz, Claude Frasson

Abstract:

This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

Keywords: Algorithms, brainwaves, emotional dimensions, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
429 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
428 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
427 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
426 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
425 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: Software Metrics, Fault prediction, Cross project, Within project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
424 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: Incremental forming, numerical simulation, MPIF, multipoint forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
423 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
422 Segmentation Problems and Solutions in Printed Degraded Gurmukhi Script

Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma

Abstract:

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper we have proposed a complete solution for segmenting touching characters in all the three zones of printed Gurmukhi script. A study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis. Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone, upper zone and lower zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded printed Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. We have also discussed a new and useful technique to segment the horizontally overlapping lines.

Keywords: Character Segmentation, Middle Zone, Upper Zone, Lower Zone, Touching Characters, Horizontally Overlapping Lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
421 Face Detection in Color Images using Color Features of Skin

Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari

Abstract:

Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.

Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
420 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Disease

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, Speech Emotion Recognition, longitudinal biomarker, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274
419 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
418 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
417 A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier

Authors: Feras Al-Obeidat, Nabil Belacel, Juan A. Carretero, Prabhat Mahanti,

Abstract:

In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.

Keywords: Knowledge Discovery, Differential Evolution, Reduced Variable Neighborhood Search, Multiple criteria classification, PROAFTN, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
416 Level Shifted Carrier Signal Based Scalar Random Pulse Width Modulation Algorithms for Cascaded Multilevel Inverter Fed Induction Motor Drive

Authors: M. Nayeemuddin, T. Bramhananda Reddy, M. Vijaya Kumar

Abstract:

Acoustic noise becoming ever more obnoxious radiated by voltage source inverter fed induction motor drive in modern and industrial applications. The drive utilized for industrial and modern applications should use “spread spectrum” innovation known as Random pulse width modulation (PWM) algorithms where acoustic noise emanates through the machine should be critically concerned. This paper illustrates three types of random PWM control algorithms with fixed switching frequency namely 1) Random modulating PWM 2) Random carrier PWM and 3) Random modulating-carrier PWM. The spectrum plots of the motor stator current demonstrate the strength and robustness of the proposed PWM algorithms. To affirm the proposed algorithms, experimental tests have been conducted using dSPACE rt1104 control board on a v/f control three phase induction motor drive fed by DC link cascaded multilevel inverter.

Keywords: Multilevel inverter, acoustic noise, CSVPWM, total harmonic distortion, random PWM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
415 Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique

Authors: Vladimir Aleksandrovich Rogov, Ghorbani Siamak

Abstract:

Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.

Keywords: Turning, Cutting conditions, Surface roughness, Natural frequency, Taguchi method, ANOVA, S/N ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4615
414 Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images

Authors: Majid Mirzaei, Saeid Samiezadeh , Abbas Khodadadi, Mohammad R. Ghazavi

Abstract:

This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.

Keywords: Bone, Osteoporosis, Noninvasive methods, Failure Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
413 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran

Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi

Abstract:

Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.

Keywords: Crop coefficient, remote sensing, vegetation indices, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
412 A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing

Authors: S. X. Sun, Q. Wang

Abstract:

With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.

Keywords: Air pollution, particulate matter, AQI, correlation coefficient, air pollution prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
411 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
410 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques

Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah

Abstract:

Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.

Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4444
409 Finite Element Application to Estimate Inservice Material Properties using Miniature Specimen

Authors: G. Partheepan, D.K. Sehgal, R.K. Pandey

Abstract:

This paper presents a method for determining the uniaxial tensile properties such as Young-s modulus, yield strength and the flow behaviour of a material in a virtually non-destructive manner. To achieve this, a new dumb-bell shaped miniature specimen has been designed. This helps in avoiding the removal of large size material samples from the in-service component for the evaluation of current material properties. The proposed miniature specimen has an advantage in finite element modelling with respect to computational time and memory space. Test fixtures have been developed to enable the tension tests on the miniature specimen in a testing machine. The studies have been conducted in a chromium (H11) steel and an aluminum alloy (AR66). The output from the miniature test viz. load-elongation diagram is obtained and the finite element simulation of the test is carried out using a 2D plane stress analysis. The results are compared with the experimental results. It is observed that the results from the finite element simulation corroborate well with the miniature test results. The approach seems to have potential to predict the mechanical properties of the materials, which could be used in remaining life estimation of the various in-service structures.

Keywords: ABAQUS, finite element, miniature test, tensileproperties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
408 The Impact of Semantic Web on E-Commerce

Authors: Karim Heidari

Abstract:

Semantic Web Technologies enable machines to interpret data published in a machine-interpretable form on the web. At the present time, only human beings are able to understand the product information published online. The emerging semantic Web technologies have the potential to deeply influence the further development of the Internet Economy. In this paper we propose a scenario based research approach to predict the effects of these new technologies on electronic markets and business models of traders and intermediaries and customers. Over 300 million searches are conducted everyday on the Internet by people trying to find what they need. A majority of these searches are in the domain of consumer ecommerce, where a web user is looking for something to buy. This represents a huge cost in terms of people hours and an enormous drain of resources. Agent enabled semantic search will have a dramatic impact on the precision of these searches. It will reduce and possibly eliminate information asymmetry where a better informed buyer gets the best value. By impacting this key determinant of market prices semantic web will foster the evolution of different business and economic models. We submit that there is a need for developing these futuristic models based on our current understanding of e-commerce models and nascent semantic web technologies. We believe these business models will encourage mainstream web developers and businesses to join the “semantic web revolution."

Keywords: E-Commerce, E-Business, Semantic Web, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461
407 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm

Authors: R.A.Mahdavinejad

Abstract:

In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.

Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
406 The OLOS® Way to Cultural Heritage: User Interface with Anthropomorphic Characteristics

Authors: Daniele Baldacci, Remo Pareschi

Abstract:

Augmented Reality and Augmented Intelligence are radically changing information technology. The path that starts from the keyboard and then, passing through milestones such as Siri, Alexa and other vocal avatars, reaches a more fluid and natural communication with computers, thus converting the dichotomy between man and machine into a harmonious interaction, now heads unequivocally towards a new IT paradigm, where holographic computing will play a key role. The OLOS® platform contributes substantially to this trend in that it infuses computers with human features, by transferring the gestures and expressions of persons of flesh and bones to anthropomorphic holographic interfaces which in turn will use them to interact with real-life humans. In fact, we could say, boldly but with a solid technological background to back the statement, that OLOS® gives reality to an altogether new entity, placed at the exact boundary between nature and technology, namely the holographic human being. Holographic humans qualify as the perfect carriers for the virtual reincarnation of characters handed down from history and tradition. Thus, they provide for an innovative and highly immersive way of experiencing our cultural heritage as something alive and pulsating in the present.

Keywords: Human-computer interfaces, holographic simulation, digital cinematography, interactive museum exhibits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
405 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: Training, rehabilitation, SCI patient, welfare, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
404 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB

Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan

Abstract:

Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.

Keywords: Circuit breaker, Condition base maintenance, Intelligent electronic device, Time base maintenance, SCADA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
403 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Authors: Uma Batra, Seema Kapoor

Abstract:

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831