Search results for: Flood prediction process
4709 A Study of Learning to Enhance Career Skills Consistent with Disruptive Innovation in the Creative Strategies for Advertising Course
Authors: Kornchanok Chidchaisuwan
Abstract:
This project is a study of learning activities of creating experience from actual work performance to enhance career skills and technological usage abilities for uses in advertising career work performance for undergraduate students who enroll in the Creative Strategies for Advertising Course. The instructional model consisted of two learning approaches: (1) simulation-based learning, which is the learning with the use of simulations of working in various sections of creative advertisement work with their own work process and steps as well as the virtual technology learning in advertising companies; and (2) project-based learning, which is the learning that the learners engage in actual work performance based on the process of creating and producing creative advertisement works to be present on new media channels. The results of learning management showed that the effects on the students in various aspects were as follows: (1) the students had experience in the advertising process at the higher level; and (2) the students had work performance skills from the actual work performance that enabled them to possess the abilities to create and present their own work; also, they had created more efficient work outcomes and disseminated them on new media channels at a better level.
Keywords: Technical literacy, career skill, experience, simulation-based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4034708 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training
Authors: D. Uma Devi, P. Seetha Ramaiah
Abstract:
Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26554707 Performance Evaluation and Modeling of a Conical Plunging Jet Aerator
Authors: Surinder Deswal, D. V. S. Verma
Abstract:
Aeration by a plunging water jet is an energetically attractive way to effect oxygen-transfer than conventional oxygenation systems. In the present study, a new type of conical shaped plunging aeration device is fabricated to generate hollow inclined ined plunging jets (jet plunge angle of π/3 ) to investigate its oxygen transfer capacity. The results suggest that the volumetric oxygen-transfer coefficient and oxygen-transfer efficiency of the conical plunging jet aerator are competitive with other types of aeration systems. Relationships of volumetric oxygen-transfer coefficient with jet power per unit volume and jet parameters are also proposed. The suggested relationships predict the volumetric oxygentransfer coefficient within a scatter of ± 15% . Further, the application of Support Vector Machines on the experimental data revealed its utility in the prediction of volumetric oxygen-transfer coefficient and development of conical plunging jet aerators.
Keywords: Conical plunging jet, oxygen-transfer efficiency, support vector machines, volumetric oxygen-transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19914706 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance
Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem
Abstract:
Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.
Keywords: Behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13804705 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10964704 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in the Hong Kong Construction Industry
Authors: Kwok Tak Kit
Abstract:
The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2°C above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.
Keywords: sustainability, sustainable engineering, BIM, LEED
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5024703 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15554702 Contextual Sentiment Analysis with Untrained Annotators
Authors: Lucas A. Silva, Carla R. Aguiar
Abstract:
This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.
Keywords: Contextualized classifier, naïve Bayes, sentiment analysis, untrained annotators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47034701 A Framework to Assess the Maturity of Customer Involvement in the Service Design of Product-Service Systems
Authors: Taghreed Abu-Salim
Abstract:
This paper develops and investigates a framework for the assessment of customer involvement in the service design process of result oriented product-service systems in order to improve the service offering in a business-to-business (B2B) context. The framework comprises five main criteria and fifteen sub-criteria that contribute to customer involvement in a hierarchy using a maturity grid to highlight the strengths and weaknesses for each criterion. To develop the customer involvement framework, an extensive literature review related to service design, result oriented product-service system (PSS) and customer involvement in service design was carried out. Key factors that significantly influence customer involvement from industry and literature were identified to develop the framework. A major contribution of the developed framework includes a hierarchy of appropriate criteria for assessing customer involvement in the service design process within results oriented PSS; the definition of four maturity levels which are suitable to describe the whole spectrum of customer involvement in the service design process; and finally, The paper concludes by enabling service providers to: take proactive decisions; screen and evaluate new services; improve perceived service quality; and provide barriers against imitation.Keywords: Customer involvement, maturity grid, new service development, result oriented product-service system, service design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21594700 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India
Authors: S. Pramanik
Abstract:
Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana— a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).
Keywords: Hindu Temple Architecture, Point Isovist, space syntax analysis, visibility graph analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12974699 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19894698 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15774697 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation
Authors: Theodosia Prodromou
Abstract:
The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.
Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14744696 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion
Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent
Abstract:
The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.Keywords: Landslide, second order work, precipitation, inclinometers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11134695 An AHP-Delphi Multi-Criteria Usage Cases Model with Application to Citrogypsum Decisions, Case Study: Kimia Gharb Gostar Industries Company
Authors: Mohsen Pirdashti, Masoomeh Omidi, Hemmatollah Pidashti
Abstract:
Today, advantage of biotechnology especially in environmental issues compared to other technologies is irrefragable. Kimia Gharb Gostar Industries Company, as a largest producer of citric acid in Middle East, applies biotechnology for this goal. Citrogypsum is a by–product of citric acid production and it considered as a valid residuum of this company. At this paper summary of acid citric production and condition of Citrogypsum production in company were introduced in addition to defmition of Citrogypsum production and its applications in world. According to these information and evaluation of present conditions about Iran needing to Citrogypsum, the best priority was introduced and emphasized on strategy selection and proper programming for self-sufficiency. The Delphi technique was used to elicit expert opinions about criteria for evaluating the usages. The criteria identified by the experts were profitability, capacity of production, the degree of investment, marketable, production ease and time production. The Analytical Hierarchy Process (ARP) and Expert Choice software were used to compare the alternatives on the criteria derived from the Delphi process.
Keywords: Analytical Hierarchy Process, ARP, Delphi, Multi- criteria decision making, Citrogypsum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23154694 Process Parameter Optimization for the Production of Gentamicin using Micromonouspora Echiniospora
Authors: M.Rajasimman, S.Subathra
Abstract:
The process parameters, temperature, pH and substrate concentration, were optimized for the production of gentamicin using Micromonouspora echinospora. Experiments were carried out according to central composite design in response surface method. The optimum conditions for the maximum production of gentamicin were found to be: temperature – 31.7oC, pH – 6.8 and substrate concentration – 3%. At these optimized conditions the production of gentamicin was found to be – 1040 mg/L. The R2 value of 0.9465 indicates a good fitness of the model.Keywords: Gentamicin, Micromonouspora echinospora, response surface method, optimization, central composite design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22454693 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise are analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.
Keywords: Cyclostationary, Duffing system, Gaussian linearization, sinusoidal signal and white noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19914692 A Conceptual Analysis of Teams’ Climate Role in the Intrapreneurial Process
Authors: Georgia C. Kosta, Christos S. Nicolaidis
Abstract:
The present paper discusses the role of teams’ climate in the intrapreneurial process. Intrapreneurship, which corresponds for entrepreneurship in existing organizations, puts special emphasis on climate as an influential factor of the intrapreneurial behavior. Although climate exists at every level and in every subgroup of the organizational structure, research focuses mainly on the study of climate that characterizes organization as a whole. However, the climate of a work team may differ radically from the organizational climate, and in fact it can be far more influential. The paper provides a conceptual analysis of organizational climate from the intrapreneurial point of view, and sheds light upon teams’ climate role in the intrapreneurial posture.
Keywords: Entrepreneurship, innovation, intrapreneurship, organizational climate, teams’ climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8904691 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting
Authors: Yeqing Guan, Fen Yang
Abstract:
To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.
Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15554690 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14454689 Supplier Sift – A Strategic Need of Modern Entrepreneurship
Authors: Rizwan Moeen, Riaz Ahmad, Tanweer Ul Islam, Shahid Ikramullah, Muhammad Umer
Abstract:
Supplier appraisal fosters energy in Supply Chain Management and helps in best optimization of viable business partners for a company. Many Decision Making techniques have already been proposed by researchers for supplier-s appraisal. However, Analytic Hierarchy Process (AHP) is assumed to be the most structured technique to attain near-best solution of the problem. This paper focuses at implementation of AHP in the procurement processes. It also suggests that on what factors a Public Sector Enterprises must focus while dealing with their suppliers and what should the suppliers do to synchronize their activities with the strategic objectives of Organization. It also highlights the weak areas in supplier appraisal process with a view to suggest viable recommendations.Keywords: AHP, MCDM techniques, Supply Chain Management (SCM), Supplier appraisal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22844688 Two Spatial Experiments based on Computational Geometry
Authors: Marco Hemmerling
Abstract:
The paper outlines the relevance of computational geometry within the design and production process of architecture. Based on two case studies, the digital chain - from the initial formfinding to the final realization of spatial concepts - is discussed in relation to geometric principles. The association with the fascinating complexity that can be found in nature and its underlying geometry was the starting point for both projects presented in the paper. The translation of abstract geometric principles into a three-dimensional digital design model – realized in Rhinoceros – was followed by a process of transformation and optimization of the initial shape that integrated aesthetic, spatial and structural qualities as well as aspects of material properties and conditions of production.Keywords: Architecture, Computer Aided Architectural Design, 3D-Modeling, Rapid Prototyping, CAD/CAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15924687 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8214686 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task
Authors: Dejanira Araiza-Illan, Tony J. Dodd
Abstract:
A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.Keywords: Autonomous navigation, mobile robots, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14804685 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry
Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos
Abstract:
The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13794684 2-D Ablated Plasma Production Process for Pulsed Ion Beam-Solid Target Interaction
Authors: Thanat Rungsirathana, Vorathit Rungsetthaphat, Shogo Azuma, Nobuhiro Harada
Abstract:
This paper presents a 2-D hydrodynamic model of the ablated plasma when irradiating a 50 μm Al solid target with a single pulsed ion beam. The Lagrange method is used to solve the moving fluid for the ablated plasma production and formation mechanism. In the calculations, a 10-ns-single-pulsed of ion beam with a total energy density of 120 J/cm2, is used. The results show that the ablated plasma was formed after 2 ns of ion beam irradiation and it started to expand right after 4-6 ns. In addition, the 2-D model give a better understanding of pulsed ion beam-solid target ablated plasma production and expansion process clearer.
Keywords: Ablated plasma, pulse ion beam, thin foil solid target, two-dimensional model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14544683 Application of Advanced Oxidation Processes to Mefenamic Acid Elimination
Authors: Olga Gimeno, Javier Rivas, Angel Encinas, Fernando Beltran
Abstract:
The elimimation of mefenamic acid has been carried out by photolysis, ozonation, adsorption onto activated carbon (AC) and combinations of the previous single systems (O3+AC and O3+UV). The results obtained indicate that mefenamic acid is not photo-reactive, showing a relatively low quantum yield of the order of 6 x 10-4 mol Einstein-1. Application of ozone to mefenamic aqueous solutions instantaneously eliminates the pharmaceutical, achieving simultaneously a 40% of mineralization. Addition of AC to the ozonation process does not enhance the process, moreover, mineralization is completely inhibited if compared to results obtained by single ozonation. The combination of ozone and UV radiation led to the best results in terms of mineralization (60% after 120 min).Keywords: Photolysis, mefenamic acid, ozone, activated carbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19654682 A Quantitative Tool for Analyze Process Design
Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río
Abstract:
Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.
Keywords: Characteristics matrix, covariance structure analysis, LISREL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15974681 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434680 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990