Search results for: Training in Virtual Environments.
403 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo
Authors: Miika Toivanen, Jouko Lampinen
Abstract:
This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582402 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580401 Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry
Authors: Perminderjit Singh, Sukhvir Singh
Abstract:
Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes.
Keywords: Total quality management, critical success factor, employee satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978400 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures
Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley
Abstract:
This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.Keywords: Climbing robot, dipole antenna, Ground Penetrating Radar (GPR), mobile robots, robotic GPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451399 The DAQ Debugger for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893398 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975397 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.
Keywords: Climate, infrastructure degradation, HVAC, neighborhood component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172396 Information Technologies in Human Resources Management - Selected Examples
Authors: A. Karasek
Abstract:
Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in an enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in human resource management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.Keywords: E-HR, human resources management, HRM practices, HRMS, information technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5526395 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194394 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.
Keywords: Factors, Kendall’s coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974393 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383392 The Change in Management Accounting from an Institutional and Contingency Perspective: A Case Study for a Romanian Company
Authors: Gabriel Jinga, Madalina Dumitru
Abstract:
The objective of this paper is to present the process of change in management accounting in Romania, a former communist country from Eastern Europe. In order to explain this process, we used the contingency and institutional theories. We focused on the following directions: the presentation of the scientific context and motivation of this research and the case study. We presented the state of the art in the process of change in the management accounting from the international and national perspective. We also described the evolution of management accounting in Romania in the context of economic and political changes. An important moment was the fall of communism in 1989. This represents a starting point for a new economic environment and for new management accounting. Accordingly, we developed a case study which presented this evolution. The conclusion of our research was that the changes in the management accounting system of the company analysed occurred in the same time with the institutionalisation of some elements (e.g. degree of competition, training and competencies in management accounting). The management accounting system was modelled by the contingencies specific to this company (e.g. environment, industry, strategy).Keywords: Management accounting, change, Romania, contingency and institutional theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330391 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.
Keywords: Gesture recognition, Kinect, shadow play animation, VRPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703390 Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles
Authors: Neil Morgan
Abstract:
The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing essential knowledge thresholds can neophytes achieve the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET).
Keywords: TESOL, threshold concepts, TESOL principles, TESOL ITE/INSET, community of practice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742389 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values
Authors: Hidehiko Okada
Abstract:
Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.
Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545388 Incidence of Disasters and Coping Mechanism among Farming Households in South West Nigeria
Authors: Fawehinmi Olabisi Alaba, Adeniyi O. R.
Abstract:
Farming households faces lots of disaster which contribute to endemic poverty. Anticipated increases in extreme weather events will exacerbate this. Primary data was administered to farming household using multi-stage random sampling technique. The result of the analysis shows that majority of the respondents (69.9%) are male, have mean household size, years of formal education and age of 5±1.14, 6±3.41, and 51.06±10.43 respectively. The major (48.9%) type of disaster experienced is flooding. Major coping mechanism adopted is sourcing for support from family and friends. Age, education, experience, access to extension agent, and mitigation control method contribute significantly to vulnerability to disaster. The major adaptation method (62.3%) is construction of drainage.
The study revealed that the coping mechanisms employed may become less effective as increasingly fragile livelihood systems struggle to withstand disaster shocks. Thus there is need for training of the farmers on measures to adapt to mitigate the shock from disasters
Keywords: Adaptation, Disasters, Flooding, Vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127387 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325386 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180385 NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels
Authors: S. Cherif, M. Turki-Hadj Alouane
Abstract:
In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.Keywords: Time varying channel, Markov model, Blind DFE, CMA, NSCMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298384 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280383 Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS
Authors: Ali Mohammadi Torkashvand, Hamid Reza Alipour
Abstract:
This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.Keywords: Supervised classification, Gully erosion, Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827382 Transformation Building of Micro- Entrepreneurs: A Conceptual Model
Authors: Abu Bakar Sedek Abdul Jamak, Saridan Abu Bakar, Zulkipli Ghazali, Roselind Wan
Abstract:
The majority of micro-entrepreneurs in Malaysia operate very small-scaled business activities such as food stalls, burger stalls, night market hawkers, grocery stores, constructions, rubber and oil palm small holders, and other agro-based services and activities. Why are they venturing into entrepreneurship - is it for survival, out of interest or due to encouragement and assistance from the local government? And why is it that some micro-entrepreneurs are lagging behind in entrepreneurship, and what do they need to rectify this situation so that they are able to progress further? Furthermore, what are the skills that the micro entrepreneurs should developed to transform them into successful micro-enterprises and become small and medium-sized enterprises (SME)? This paper proposes a 7-Step approach that can serve as a basis for identification of critical entrepreneurial success factors that enable policy makers, practitioners, consultants, training managers and other agencies in developing tools to assist micro business owners. This paper also highlights the experience of one of the successful companies in Malaysia that has transformed from micro-enterprise to become a large organization in less than 10 years.Keywords: Entrepreneurship, Micro-entrepreneurs, Transformation, Customers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384381 Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli
Authors: Kelechi E. Ezeji
Abstract:
The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation.Keywords: Computer aided design, curriculum, education, ethics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249380 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft
Authors: F. Caliskan
Abstract:
This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701379 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052378 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish
Authors: Gintarė Sauliutė, Gintaras Svecevičius
Abstract:
Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).
Keywords: Bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831377 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks
Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis
Abstract:
The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.
Keywords: Comparative factor, carrier aggregation, indoor mobile network, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713376 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701375 Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation
Authors: K. Kong, E. Ferrier, L. Michel
Abstract:
The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRCCFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.Keywords: Carbon fibre-reinforced polymer (CFRP) bars, creep behaviour, glulam, ultra-high performance fibre reinforced concrete (UHPFRC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542374 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University
Authors: Siriporn Poolsuwan, Kanyarat Bussaban
Abstract:
This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization
Keywords: Online Database, User Behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624