Search results for: Voltage mode
109 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415108 Adjustment of a PET Scanner for PEPT
Authors: Alireza Sadrmomtaz
Abstract:
Positron emission particle tracking (PEPT) is a technique in which a single radioactive tracer particle can be accurately tracked as it moves. A limitation of PET is that in order to reconstruct a tomographic image it is necessary to acquire a large volume of data (millions of events), so it is difficult to study rapidly changing systems. By considering this fact, PEPT is a very fast process compared with PET. In PEPT detecting both photons defines a line and the annihilation is assumed to have occurred somewhere along this line. The location of the tracer can be determined to within a few mm from coincident detection of a small number of pairs of back-to-back gamma rays and using triangulation. This can be achieved many times per second and the track of a moving particle can be reliably followed. This technique was invented at the University of Birmingham [1]. The attempt in PEPT is not to form an image of the tracer particle but simply to determine its location with time. If this tracer is followed for a long enough period within a closed, circulating system it explores all possible types of motion. The application of PEPT to industrial process systems carried out at the University of Birmingham is categorized in two subjects: the behaviour of granular materials and viscous fluids. Granular materials are processed in industry for example in the manufacture of pharmaceuticals, ceramics, food, polymers and PEPT has been used in a number of ways to study the behaviour of these systems [2]. PEPT allows the possibility of tracking a single particle within the bed [3]. Also PEPT has been used for studying systems such as: fluid flow, viscous fluids in mixers [4], using a neutrally-buoyant tracer particle [5].Keywords: PET, BGO, Particle Tracking, ECAT 931, List mode, PEPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403107 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture
Authors: Osama Al-Sehail
Abstract:
This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.Keywords: Biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522106 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective
Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan
Abstract:
In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.
Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903105 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.
Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500104 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling
Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad
Abstract:
A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.
Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665103 Power Transformers Insulation Material Investigations: Partial Discharge
Authors: Jalal M. Abdallah
Abstract:
There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.
Keywords: Transformers, insulation materials, voids, partial discharge (PD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431102 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression
Authors: Zhifeng Xu, Zhongfan Chen
Abstract:
A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.
Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343101 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller
Authors: P. Valsalal, S. Thangalakshmi
Abstract:
There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.
Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579100 Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells
Authors: Sima Ziaee, Khosro Jafarpur
Abstract:
Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.Keywords: Buckling behavior, Elastic viscoplastic model, Entropy generation, Finite element method, Shell dimensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163599 Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System
Authors: N. Yuvaraj, V. B. Prakash, D. Venkatraj
Abstract:
This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.Keywords: Ubiquitous computing, differential GPS, fleet management system, wireless transmitter and receiver computerized median i.e. linked blocks (removable).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199098 Analysis of Noise Level Effects on Signal-Averaged Electrocardiograms
Authors: Chun-Cheng Lin
Abstract:
Noise level has critical effects on the diagnostic performance of signal-averaged electrocardiogram (SAECG), because the true starting and end points of QRS complex would be masked by the residual noise and sensitive to the noise level. Several studies and commercial machines have used a fixed number of heart beats (typically between 200 to 600 beats) or set a predefined noise level (typically between 0.3 to 1.0 μV) in each X, Y and Z lead to perform SAECG analysis. However different criteria or methods used to perform SAECG would cause the discrepancies of the noise levels among study subjects. According to the recommendations of 1991 ESC, AHA and ACC Task Force Consensus Document for the use of SAECG, the determinations of onset and offset are related closely to the mean and standard deviation of noise sample. Hence this study would try to perform SAECG using consistent root-mean-square (RMS) noise levels among study subjects and analyze the noise level effects on SAECG. This study would also evaluate the differences between normal subjects and chronic renal failure (CRF) patients in the time-domain SAECG parameters. The study subjects were composed of 50 normal Taiwanese and 20 CRF patients. During the signal-averaged processing, different RMS noise levels were adjusted to evaluate their effects on three time domain parameters (1) filtered total QRS duration (fQRSD), (2) RMS voltage of the last QRS 40 ms (RMS40), and (3) duration of the low amplitude signals below 40 μV (LAS40). The study results demonstrated that the reduction of RMS noise level can increase fQRSD and LAS40 and decrease the RMS40, and can further increase the differences of fQRSD and RMS40 between normal subjects and CRF patients. The SAECG may also become abnormal due to the reduction of RMS noise level. In conclusion, it is essential to establish diagnostic criteria of SAECG using consistent RMS noise levels for the reduction of the noise level effects.Keywords: Signal-averaged electrocardiogram, Ventricular latepotentials, Chronic renal failure, Noise level effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180297 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser
Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua
Abstract:
In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.
Keywords: Energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95896 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method
Authors: Amira Mabrouk, Chokri Abdennadher
Abstract:
The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.Keywords: Willingness to pay, value of time, contingent valuation, time value, city toll, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229995 Power System Damping Using Hierarchical Fuzzy Multi- Input PSS and Communication Lines Active Power Deviations Input and SVC
Authors: Mohammad Hasan Raouf, Ahmad Rouhani, Mohammad Abedini, Ebrahim Rasooli Anarmarzi
Abstract:
In this paper the application of a hierarchical fuzzy system (HFS) based on MPSS and SVC in multi-machine environment is studied. Also the effect of communication lines active power variance signal between two ΔPTie-line regions, as one of the inputs of hierarchical fuzzy multi-input PSS and SVC (HFMPSS & SVC), on the increase of low frequency oscillation damping is examined. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type PSS. The number of rules grows exponentially with the number of variables in a classic fuzzy system. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. Phasor model of SVC is described and used in this paper. The performances of MPSS and ΔPTie-line based HFMPSS and also the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. The efficiency of the proposed model is examined by simulating a four-machine power system. Results show that the proposed method is performing satisfactorily within the whole range of disturbances and reduces the cost of system.
Keywords: Communication lines active power variance signal, Hierarchical fuzzy system (HFS), Multi-input power system stabilizer (MPSS), Static VAR compensator (SVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167094 The Effects of Logistical Centers Realization on Society and Economy
Authors: Anna Dolinayova, Juraj Camaj, Martin Loch
Abstract:
Presently, it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight has had a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describes the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelled total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.
Keywords: Delivery time, economy effectiveness, logistical centers, ecological efficiency, optimization, society.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204293 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.
Keywords: 3D printing, composite bushing, modal analysis, multi-material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5892 Coupling Heat and Mass Transfer for Hydrogen-Assisted Self-Ignition Behaviors of Propane-Air Mixtures in Catalytic Micro-Channels
Authors: Junjie Chen, Deguang Xu
Abstract:
Transient simulation of the hydrogen-assisted self-ignition of propane-air mixtures were carried out in platinum-coated micro-channels from ambient cold-start conditions, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of hydrogen-propane mixed fuel is analyzed and compared with the heated feed case. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in catalytic micro-channels with a 0.2 mm gap size, eliminating the need for startup devices. The minimum hydrogen composition for propane self-ignition is found to be in the range of 0.8-2.8% (on a molar basis), and increases with increasing wall thermal conductivity, and decreasing inlet velocity or propane composition. Higher propane-air ratio results in earlier ignition. The ignition characteristics of hydrogen-assisted propane qualitatively resemble the selectively inlet feed preheating mode. Transient response of the mixed hydrogen- propane fuel reveals sequential ignition of propane followed by hydrogen. Front-end propane ignition is observed in all cases. Low wall thermal conductivities cause earlier ignition of the mixed hydrogen-propane fuel, subsequently resulting in low exit temperatures. The transient-state behavior of this micro-scale system is described, and the startup time and minimization of hydrogen usage are discussed.
Keywords: Micro-combustion, Self-ignition, Hydrogen addition, Heat transfer, Catalytic combustion, Transient simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188591 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis
Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan
Abstract:
Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94690 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.
Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246789 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes
Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb
Abstract:
Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.
Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235488 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283087 Predictor Factors for Treatment Failure among Patients on Second Line Antiretroviral Therapy
Authors: Mohd. A. M. Rahim, Yahaya Hassan, Mathumalar L. Fahrni
Abstract:
Second line antiretroviral therapy (ART) regimen is used when patients fail their first line regimen. There are many factors such as non-adherence, drug resistance as well as virological and immunological failure that lead to second line highly active antiretroviral therapy (HAART) regimen treatment failure. This study was aimed at determining predictor factors to treatment failure with second line HAART and analyzing median survival time. An observational, retrospective study was conducted in Sungai Buloh Hospital (HSB) to assess current status of HIV patients treated with second line HAART regimen. Convenience sampling was used and 104 patients were included based on the study’s inclusion and exclusion criteria. Data was collected for six months i.e. from July until December 2013. Data was then analysed using SPSS version 18. Kaplan-Meier and Cox regression analyses were used to measure median survival times and predictor factors for treatment failure. The study population consisted mainly of male subjects, aged 30- 45 years, who were heterosexual, and had HIV infection for less than 6 years. The most common second line HAART regimen given was lopinavir/ritonavir (LPV/r)-based combination. Kaplan-Meier analysis showed that patients on LPV/r demonstrated longer median survival times than patients on indinavir/ritonavir (IDV/r) based combination (p<0.001). The commonest reason for a treatment to fail with second line HAART was non-adherence. Based on Cox regression analysis, other predictor factors for treatment failure with second line HAART regimen were age and mode of HIV transmission.
Keywords: Adherence, antiretroviral therapy, second line, treatment failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271786 Performance Analysis of Digital Signal Processors Using SMV Benchmark
Authors: Erh-Wen Hu, Cyril S. Ku, Andrew T. Russo, Bogong Su, Jian Wang
Abstract:
Unlike general-purpose processors, digital signal processors (DSP processors) are strongly application-dependent. To meet the needs for diverse applications, a wide variety of DSP processors based on different architectures ranging from the traditional to VLIW have been introduced to the market over the years. The functionality, performance, and cost of these processors vary over a wide range. In order to select a processor that meets the design criteria for an application, processor performance is usually the major concern for digital signal processing (DSP) application developers. Performance data are also essential for the designers of DSP processors to improve their design. Consequently, several DSP performance benchmarks have been proposed over the past decade or so. However, none of these benchmarks seem to have included recent new DSP applications. In this paper, we use a new benchmark that we recently developed to compare the performance of popular DSP processors from Texas Instruments and StarCore. The new benchmark is based on the Selectable Mode Vocoder (SMV), a speech-coding program from the recent third generation (3G) wireless voice applications. All benchmark kernels are compiled by the compilers of the respective DSP processors and run on their simulators. Weighted arithmetic mean of clock cycles and arithmetic mean of code size are used to compare the performance of five DSP processors. In addition, we studied how the performance of a processor is affected by code structure, features of processor architecture and optimization of compiler. The extensive experimental data gathered, analyzed, and presented in this paper should be helpful for DSP processor and compiler designers to meet their specific design goals.Keywords: digital signal processors, DSP benchmark, instruction level parallelism, modified cyclomatic complexity, performance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160885 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies
Authors: Salina Budin, Shaira Ismail
Abstract:
Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.Keywords: Learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138884 How to Win Passengers and Influence Motorists? Lessons Learned from a Comparative Study of Global Transit Systems
Authors: Oliver F. Shyr, Yu-Hsuan Hsiao, David E. Andersson
Abstract:
Due to the call of global warming effects, city planners aim at actions for reducing carbon emission. One of the approaches is to promote the usage of public transportation system toward the transit-oriented-development. For example, rapid transit system in Taipei city and Kaohsiung city are opening. However, until November 2008 the average daily patronage counted only 113,774 passengers at Kaohsiung MRT systems, much less than which was expected. Now the crucial questions: how the public transport competes with private transport? And more importantly, what factors would enhance the use of public transport? To give the answers to those questions, our study first applied regression to analyze the factors attracting people to use public transport around cities in the world. It is shown in our study that the number of MRT stations, city population, cost of living, transit fare, density, gasoline price, and scooter being a major mode of transport are the major factors. Subsequently, our study identified successful and unsuccessful cities in regard of the public transport usage based on the diagnosis of regression residuals. Finally, by comparing transportation strategies adopted by those successful cities, our conclusion stated that Kaohsiung City could apply strategies such as increasing parking fees, reducing parking spaces in downtown area, and reducing transfer time by providing more bus services and public bikes to promote the usage of public transport.
Keywords: Public Transit System, Comparative Study, Transport Demand Management, Regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209183 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179482 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61081 Solid Circulation Rate and Gas Leakage Measurements in an Interconnected Bubbling Fluidized Beds
Authors: Ho-Jung Ryu, Seung-Yong Lee, Young Cheol Park, Moon-Hee Park
Abstract:
Two-interconnected fluidized bed systems are widely used in various processes such as Fisher-Tropsch, hot gas desulfurization, CO2 capture-regeneration with dry sorbent, chemical-looping combustion, sorption enhanced steam methane reforming, chemical-looping hydrogen generation system, and so on. However, most of two-interconnected fluidized beds systems require riser and/or pneumatic transport line for solid conveying and loopseals or seal-pots for gas sealing, recirculation of solids to the riser, and maintaining of pressure balance. The riser (transport bed) is operated at the high velocity fluidization condition and residence times of gas and solid in the riser are very short. If the reaction rate of catalyst or sorbent is slow, the riser can not ensure sufficient contact time between gas and solid and we have to use two bubbling beds for each reaction to ensure sufficient contact time. In this case, additional riser must be installed for solid circulation. Consequently, conventional two-interconnected fluidized bed systems are very complex, large, and difficult to operate. To solve these problems, a novel two-interconnected fluidized bed system has been developed. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables on solid circulation rate, gas leakage between two beds have been investigated in a cold mode two-interconnected fluidized bed system. Moreover, long-term operation of continuous solid circulation up to 60 hours has been performed to check feasibility of stable operation.Keywords: Fluidized bed, Gas leakage, Long-term operation, Solid circulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199980 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems
Authors: Zi-Ang Li, Mu-Xuan Tao
Abstract:
During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.
Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572