WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/1586,
	  title     = {Adjustment of a PET Scanner for PEPT},
	  author    = {Alireza Sadrmomtaz},
	  country	= {},
	  institution	= {},
	  abstract     = {Positron emission particle tracking (PEPT) is a
technique in which a single radioactive tracer particle can be
accurately tracked as it moves. A limitation of PET is that in order to
reconstruct a tomographic image it is necessary to acquire a large
volume of data (millions of events), so it is difficult to study rapidly
changing systems. By considering this fact, PEPT is a very fast
process compared with PET.
In PEPT detecting both photons defines a line and the annihilation
is assumed to have occurred somewhere along this line. The location
of the tracer can be determined to within a few mm from coincident
detection of a small number of pairs of back-to-back gamma rays and
using triangulation. This can be achieved many times per second and
the track of a moving particle can be reliably followed. This
technique was invented at the University of Birmingham [1].
The attempt in PEPT is not to form an image of the tracer particle
but simply to determine its location with time. If this tracer is
followed for a long enough period within a closed, circulating system
it explores all possible types of motion.
The application of PEPT to industrial process systems carried out
at the University of Birmingham is categorized in two subjects: the
behaviour of granular materials and viscous fluids. Granular
materials are processed in industry for example in the manufacture of
pharmaceuticals, ceramics, food, polymers and PEPT has been used
in a number of ways to study the behaviour of these systems [2].
PEPT allows the possibility of tracking a single particle within the
bed [3]. Also PEPT has been used for studying systems such as: fluid
flow, viscous fluids in mixers [4], using a neutrally-buoyant tracer
particle [5].},
	    journal   = {International Journal of Physical and Mathematical Sciences},
	  volume    = {2},
	  number    = {5},
	  year      = {2008},
	  pages     = {319 - 321},
	  ee        = {https://publications.waset.org/pdf/1586},
	  url   	= {https://publications.waset.org/vol/17},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 17, 2008},
	}