Search results for: Experience based learning
11206 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28611205 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154711204 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber
Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi
Abstract:
At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.
Keywords: FEM Analysis, ECR ion source, dielectrical measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109711203 Virtual Reality Classrooms Strategies for Creating a Social Presence
Authors: Elizabeth M. Hodge, M.H.N. Tabrizi, Mary A. Farwell, Karl L. Wuensch
Abstract:
Delivering course material via a virtual environment is beneficial to today-s students because it offers the interactivity, real-time interaction and social presence that students of all ages have come to accept in our gaming rich community. It is essential that the Net Generation also known as Generation Why, have exposure to learning communities that encompass interactivity to form social and educational connections. As student and professor become interconnected through collaboration and interaction in a virtual learning space, relationships develop and students begin to take on an individual identity. With this in mind the research project was developed to investigate the use of virtual environments on student satisfaction and the effectiveness of course delivery. Furthermore, the project was designed to integrate both interactive (real-time) classes conducted in the Virtual Reality (VR) environment while also creating archived VR sessions for student use in retaining and reviewing course content.Keywords: Virtual Reality, Social Presence, Virtual Environments, Course Delivery Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191411202 GPU-Based Volume Rendering for Medical Imagery
Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch
Abstract:
We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.Keywords: Volume rendering, graphics processors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185411201 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive
Authors: M. Zerikat, M. Bendjebbar, N. Benouzza
Abstract:
In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.
Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246111200 A Decision Support Tool for Evaluating Mobility Projects
Abstract:
Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).
Keywords: Decision support tool, hybrid approach, urban mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199411199 Identification of Ice Hockey World Championship International Sports Event through Brand Personality
Authors: Eva Čáslavová, Andrej Višněvský
Abstract:
This research focused on the dimensions of brand personality of the Ice Hockey World Championship sporting event. The authors compared the elements in relation to different demographic groups including gender, age, level of education and student status of the population of Prague. Moreover, the differences of opinions of respondents who had experience of visiting a sports event and those who had not were assessed. In the research, the modified brand personality scale was used. This modified scale consists of five dimensions: responsibility, activity, toughness, individuality and emotionality, none of which was previously tested. The authors had an intentional sample of 291 respondents from Prague available, ranging in age from 18 years to 75 years, with either a high school or university education. The respondents rated the characteristic features in a seven-point Likert Scale and the data was collected in November 2012. The results suggest that the Ice Hockey World Championship is most identified with these dimensions: responsibility, emotionality and activity. Men had higher mean scores (4.93) on the Likert Scale in the emotionality dimension, while women had higher mean scores (4.91) in the activity dimension. Those respondents with experience visiting an Ice Hockey World Championship match had the highest mean score (5.10) in the emotionality dimension. This research had expected to show more pronounced mean values (above six) on the Likert scale in the emotionality and activity dimensions that more strongly characterize the brand personality of the Ice Hockey World Championship, however this expectation was not confirmed.Keywords: Brand personality dimensions, ice hockey, international sport event, sports marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127311198 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.
Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354511197 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills
Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin
Abstract:
When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.Keywords: Metacognitive thinking skills, procedural knowledge, conditional knowledge, declarative knowledge, meta-teaching and regulation of cognitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143711196 The European Union’s Generalized System of Preferences (GSP) and the Prospect of a Unified Database
Authors: Iasha Meskhia, Rusudan Seturidze
Abstract:
Free access for Georgian goods to the EU markets is one of the important factors for Georgia’s economic development, attraction of investments and raising the standard of living. The European Union is the most important trade partner for Georgia. Great experience has been accumulated with respect to removing trade barriers between Georgia and the European Union. Despite it, certain problems still persist.
In the present article, we have reviewed the systems of preferences with the European Union, the EU’s Generalized System of Preferences (GSP) and the essence of ongoing reform; we have assessed weak and strong sides of relations established between the European Union and Georgia in this regard; analyzed Georgia’s export and import over the past years; also reviewed the prospect of a unified database; established existing and anticipated positive and negative factors. Based on the analysis, we have provided the relevant recommendations.
Keywords: EU-Georgia trade, EU’s GSP reform, Georgia’s export-import, REX system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221611195 “Green Growth” in Kazakhstan: Political Leadership, Business Strategies and Environmental Fiscal Reform for Competitive System Change
Authors: A. S. Salimzhanova, J. C. Sardinas, O. A. Yanovskaya
Abstract:
The objective of this research work is to discuss the concept of “green growth” in the Republic of Kazakhstan introduced by its government in the “National Sustainable Development Strategy” with the objective of transition to a resource-efficient, “green economy.” We believe that emerging economies like Kazakhstan can pursue a cleaner and more efficient development path by introducing an environmental tax system based on resource consumption rather than only income and labor. The key issues discussed in this article are the eco-efficiency, which refers to closing the gap between economic and ecological efficiencies, and the structural change of the economy toward “green growth.” We also strongly believe that studying the experience of East Asian countries on “green reform” including eco-innovation and “green solutions” in business is essential to the case of Kazakhstan. All of these will raise the status of Kazakhstan to the level of one of the thirty developed countries over the next decades.
Keywords: Economic strategy, green growth, green solutions, natural resource management, environmental tax system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217811194 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311193 Meta Model Based EA for Complex Optimization
Authors: Maumita Bhattacharya
Abstract:
Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiencyKeywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206711192 An Innovation of Travel Information Gathering Framework
Authors: Pairaya J., Buddhagarn R., Sukree S., Punthumadee K.
Abstract:
Application of Information Technology (IT) has revolutionized the functioning of business all over the world. Its impact has been felt mostly among the information of dependent industries. Tourism is one of such industry. The conceptual framework in this study represents an innovation of travel information searching system on mobile devices which is used as tools to deliver travel information (such as hotels, restaurants, tourist attractions and souvenir shops) for each user by travelers segmentation based on data mining technique to segment the tourists- behavior patterns then match them with tourism products and services. This system innovation is designed to be a knowledge incremental learning. It is a marketing strategy to support business to respond traveler-s demand effectively.Keywords: Tourism, Innovation, Information Searching, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186911191 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue
Authors: M. Rezki, A. Belaidi
Abstract:
This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.
Keywords: EMG, health platform, conductor’s tram, muscle fatigue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172511190 A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface
Authors: Juergen Rossmann, Andre Kupetz, Roland Wischnewski
Abstract:
Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.Keywords: 3-D simulation system, augmented reality, teleoperation of mobile robots, user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204111189 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.
Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11811188 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning
Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri
Abstract:
Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.
Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214211187 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking
Authors: Mohamed Chabi, Mohammad Shahid Jamil, Mahmoud I Syam
Abstract:
The purpose of this study is to determine whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard. It is found that online assessment by using selective types of questions like multiple choices, true or false and final answer questions don’t reflect the actual understanding of students in solving the problems and teachers can’t determine the weakness points of students. In addition, it is showed that OBMCQs are a very good tool for self-assessment and when teachers are testing for knowledge and facts. But when it comes to the skills, OBMCQs are poor tools for measuring the ability to apply knowledge to complex math problem.
Keywords: Paper assessment, online assessment, learning management system, content management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203811186 Knowing Where the Learning Is a Shift from Summative to Formative Assessment
Authors: Eric Ho
Abstract:
Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.
Keywords: Formative assessment, higher education, learning styles, Confucian heritage culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247311185 Simplified Mobile AR Platform Design for Augmented Tourism
Authors: Eric Hawkinson, Edgaras Artemciukas
Abstract:
This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.Keywords: Augmented tourism, augmented reality, user experience, mobile design, etourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115311184 A Descriptive Study on Psychiatric Morbidity among Nurses Working in Selected Hospitals of Udupi and Mangalore Districts Karnataka, India
Authors: Tessy Treesa Jose, Sripathy M. Bhat
Abstract:
Nursing is recognized as a stressful occupation and has indicated a probable high prevalence of distress. It is a helping profession requiring a high degree of commitment and involvement. If stress is intense, continuous and repeated, it becomes a negative phenomenon or "distress," which can lead to physical illness and psychological disorders. The frequency of common psychosomatic symptoms including sleeping problems, tension headache, chronic fatigue, palpitation etc. may be an indicator of nurses’ work-related stress level. Objectives of the study were to determine psychiatric morbidity among nurses and to find its association with selected variables. The study population consisted of 1040 registered nurses working in selected medical college hospitals and government hospitals of Udupi and Mangalore districts. Descriptive survey design was used to conduct the study. Subjects were selected by using purposive sampling. Data were gathered by administering background proforma and General Health questionnaire. Severe distress was experienced by 0.9% of nurses and 5.6% had some evidence of distress. Subjects who did not have any distress were 93.5%. No significant association between psychiatric morbidity in nurses and demographic variables was observed. With regard to work variables significant association is observed between psychiatric morbidity and total years of experience (z=10.67, p=0.03) and experience in current area of work (z=9.43, p=0.02).Keywords: Psychiatric morbidity, nurse, selected hospitals, working.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122411183 Attitude Change after Taking a Virtual Global Understanding Course
Authors: Rosina C. Chia, Elmer Poe, Karl L. Wuensch
Abstract:
A virtual collaborative classroom was created at East Carolina University, using videoconference technology via regular internet to bring students from 18 different countries, 2 at a time, to the ECU classroom in real time to learn about each other-s culture. Students from two countries are partnered one on one, they meet for 4-5 weeks, and submit a joint paper. Then the same process is repeated for two other countries. Lectures and student discussions are managed with pre-determined topics and questions. Classes are conducted in English and reading assignments are placed on the website. Administratively all partners are independent, students pay fees and get credits at their home institution. Familiarity with technology, knowledge in cultural understanding and attitude change were assessed, only attitude changes are reported in this paper. After taking this course, all students stated their comfort level in working with, and their desire to interact with, culturally different others grew stronger and their xenophobia and isolationist attitudes decreased.
Keywords: Attitude change, interactive cultural learning, multicultural education, real time virtual learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183311182 Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers
Authors: Mohammad Syuhaimi Ab-Rahman, Mohd Hadi Guna Safnal, Mohd Hazwan Harun, Mohd.Saiful Dzulkefly Zan, Kasmiran Jumari
Abstract:
Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.
Keywords: polymer optical fiber (POF), customer-made, fused-taper-twisted fiber, optical coupler, small world communication, home network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142011181 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59411180 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.
Keywords: Engineering knowledge, fuzzy logic control ontology, ontology development, table of contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117411179 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry
Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos
Abstract:
The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137911178 Multiplayer RC-Car Driving System in a Collaborative Augmented Reality Environment
Authors: Kikuo Asai, Yuji Sugimoto
Abstract:
We developed a prototype system for multiplayer RC-car driving in a collaborative augmented reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.
Keywords: Multiplayer, RC-car, Collaborative Environment, Augmented Reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206811177 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.
Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67