Search results for: Shear strength parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5084

Search results for: Shear strength parameters

3524 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
3523 Performance of QoS Parameters in MANET Application Traffics in Large Scale Scenarios

Authors: Vahid Ayatollahi Tafti, Abolfazl Gandomi

Abstract:

A mobile Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration. A user can move anytime in an ad hoc scenario and, as a result, such a network needs to have routing protocols which can adopt dynamically changing topology. To accomplish this, a number of ad hoc routing protocols have been proposed and implemented, which include DSR, OLSR and AODV. This paper presents a study on the QoS parameters for MANET application traffics in large-scale scenarios with 50 and 120 nodes. The application traffics analyzed in this study is File Transfer Protocol (FTP). In large scale networks (120 nodes) OLSR shows better performance and in smaller scale networks (50 nodes)AODV shows less packet drop rate and OLSR shows better throughput.

Keywords: aodv, dsr, manet , olsr , qos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
3522 Robust Adaptive Control of a Robotic Manipulator with Unknown Dead Zone and Friction Torques

Authors: Ibrahim F. Jasim, Najah F. Jasim

Abstract:

The problem of controlling a two link robotic manipulator, consisting of a rotating and a prismatic links, is addressed. The actuations of both links are assumed to have unknown dead zone nonlinearities and friction torques modeled by LuGre friction model. Because of the existence of the unknown dead zone and friction torque at the actuations, unknown parameters and unmeasured states would appear to be part of the overall system dynamics that need for estimation. Unmeasured states observer, unknown parameters estimators, and robust adaptive control laws have been derived such that closed loop global stability is achieved. Simulation results have been performed to show the efficacy of the suggested approach.

Keywords: Adaptive Robust Control, Dead Zone, Friction Torques, Robotic Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
3521 DEA-Based Variable Structure Position Control of DC Servo Motor

Authors: Ladan Maijama’a, Jibril D. Jiya, Ejike C. Anene

Abstract:

This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.

Keywords: Differential evolution algorithm, laboratory DC servomotor, sliding mode control, variable structure control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
3520 Influence of High Speed Parameters on the Quality of Machined Surface

Authors: Jana Novakova, Lenka Petrkovska, Josef Brychta, Robert Cep, Lenka Ocenasova

Abstract:

The contribution is dealing with the influence of high speed parameters on the quality of machined surface. In general the principle of high speed cutting lies in achieving faster machine times with concurrent increase in accuracy and quality of the machined areas in largely irregular, mathematically hard to define shapes. High speed machining is a highly effective method of machining with the following goals: increasing of machining productivity, increasing of quality of the machined surface, improving of machining economy, improving of ecological aspects of machining. This article is based on an experiment performed by the Department of Machining and Assembly of the Faculty of Mechanical Engineering of VŠBTechnical University of Ostrava.

Keywords: High speed cutting, measurement, surface integrity, surface roughness, residual stress/

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
3519 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
3518 Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

Authors: Motahar Reza, Anadi Sankar Gupta

Abstract:

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Keywords: Viscoelastic fluid, Flow past a porous plate, Heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
3517 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
3516 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
3515 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
3514 Soil Quality State and Trends in New Zealand’s Largest City after 15 Years

Authors: Fiona Curran-Cournane

Abstract:

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009- 2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6 and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

Keywords: Heavy metals, Pollution Index, Rural and Urban land use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
3513 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels

Authors: S. Ansari Sadrabadi, G. H. Rahimi

Abstract:

In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.

Keywords: FGM, Cylindrical pressure tubes, Small deformation theory, Yield onset, Thermal loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
3512 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.

Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
3511 Weight Comparison of Oil and Dry Type Distribution Transformers

Authors: Murat Toren, Mehmet Çelebi

Abstract:

Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.

Keywords: Weight, oil-type transformers, dry-type transformers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288
3510 Fabrication and Characterization of Al/Methyl Orange/n-Si Heterojunction Diode

Authors: Muhammad Tahir, Muhammad H. Sayyad, Dil N. Khan, Fazal Wahab

Abstract:

Herein, the organic semiconductor methyl orange (MO), is investigated for the first time for its electronic applications. For this purpose, Al/MO/n-Si heterojunction is fabricated through economical cheap and simple “drop casting” technique. The currentvoltage (I-V) measurements of the device are made at room temperature under dark conditions. The I-V characteristics of Al/MO/n-Si junction exhibits asymmetrical and rectifying behavior that confirms the formation of diode. The diode parameters such as rectification ratio (RR), turn on voltage (Vturn on), reverse saturation current (I0), ideality factor (n), barrier height ( b f ), series resistance (Rs) and shunt resistance (Rsh) are determined from I-V curves using Schottky equations. These values of these parameters are also extracted and verified by applying Cheung’s functions. The conduction mechanisms are explained from the forward bias I-V characteristics using the power law.

Keywords: Electrical properties, Organic/inorganic heterojunction diode, Methyl Orange, Cheungs Functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3509 Technological Value of Selected Spring Wheat Cultivars Depending on the Sowing Date

Authors: Marta Wyzińska, Jerzy Grabiński, Alicja Sułek

Abstract:

The grain quality is a decisive factor in its use. In Poland, spring wheat is characterized by more favorable quality parameters in relation to the winter form of this species. In the present study, the effects of three different sowing dates (autumn, delayed autumn, and spring) and cultivar (Tybalt, Cytra, Bombona, Monsun, and Parabola) on the selected technological value parameters of spring wheat over three years were studied. The field trials were carried out in two locations (Bezek, Czesławice) in the Lubelskie Vivodeship, Poland. It was found that the falling number of spring wheat grains from autumn sowing dates was at a similar level to wheat sown in spring. The amount of wet gluten in the grain was variable in years, and its quality was better in wheat sown in spring. Sedimentation index was dependent upon on the cultivar.

Keywords: Sowing term, spring wheat, technological value, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
3508 Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption

Authors: S.B. Thakre, L.B. Bhuyar, S.J. Deshmukh

Abstract:

This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.

Keywords: Aerator, Aeration efficiency, Dissolve Oxygen, Overall oxygen transfer coefficient, Oxidation ditch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868
3507 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control

Authors: T. C. Kuo, Y. J. Huang, B. W. Hong

Abstract:

This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.

Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
3506 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes

Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat

Abstract:

For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.

Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
3505 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: Orbit determination, STK, MATLAB-GUI, satellite tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3504 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: Non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
3503 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA

Authors: M. K. Pradhan, Mayank Meena, Shubham Sen, Arvind Singh

Abstract:

In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.

Keywords: Material Removal Rate, Surface Roughness, Taguchi Method, Grey Relational Analysis, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
3502 Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber

Authors: G. Zuppardi, F. Romano

Abstract:

Technology of thin film deposition is of interest in many engineering fields, from electronic manufacturing to corrosion protective coating. A typical deposition process, like that developed at the University of Eindhoven, considers the deposition of a thin, amorphous film of C:H or of Si:H on the substrate, using the Expanding Thermal arc Plasma technique. In this paper a computing procedure is proposed to simulate the flow field in a deposition chamber similar to that at the University of Eindhoven and a sensitivity analysis is carried out in terms of: precursor mass flow rate, electrical power, supplied to the torch and fluid-dynamic characteristics of the plasma jet, using different nozzles. To this purpose a deposition chamber similar in shape, dimensions and operating parameters to the above mentioned chamber is considered. Furthermore, a method is proposed for a very preliminary evaluation of the film thickness distribution on the substrate. The computing procedure relies on two codes working in tandem; the output from the first code is the input to the second one. The first code simulates the flow field in the torch, where Argon is ionized according to the Saha-s equation, and in the nozzle. The second code simulates the flow field in the chamber. Due to high rarefaction level, this is a (commercial) Direct Simulation Monte Carlo code. Gas is a mixture of 21 chemical species and 24 chemical reactions from Argon plasma and Acetylene are implemented in both codes. The effects of the above mentioned operating parameters are evaluated and discussed by 2-D maps and profiles of some important thermo-fluid-dynamic parameters, as per Mach number, velocity and temperature. Intensity, position and extension of the shock wave are evaluated and the influence of the above mentioned test conditions on the film thickness and uniformity of distribution are also evaluated.

Keywords: Deposition chamber, Direct Simulation Mote Carlo method (DSMC), Plasma chemistry, Rarefied gas dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
3501 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.

Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
3500 The Effect of Global Solar Variations on the Performance of n-AlGaAs/p-GaAs Solar Cells

Authors: A. Guechi, M. Chegaar

Abstract:

This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%. The efficiency decreases with increasing atmospheric turbidity and air mass.

Keywords: AlGaAs/GaAs, Solar Cells, Environmental parameters, Spectral Variation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
3499 Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

Authors: Won-Pil Park, Seung-Kwan Cho, Jai-Young Ko, Anders Kristensson, S.T.S. Al-Hassani, Han-Sung Kim, Dohyung Lim

Abstract:

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Keywords: Finite Element Analysis, Mechanical Characteristic, Transient Non-uniform Balloon-Stent Expansion, Vascular Stent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
3498 Clustering of Variables Based On a Probabilistic Approach Defined on the Hypersphere

Authors: Paulo Gomes, Adelaide Figueiredo

Abstract:

We consider n individuals described by p standardized variables, represented by points of the surface of the unit hypersphere Sn-1. For a previous choice of n individuals we suppose that the set of observables variables comes from a mixture of bipolar Watson distribution defined on the hypersphere. EM and Dynamic Clusters algorithms are used for identification of such mixture. We obtain estimates of parameters for each Watson component and then a partition of the set of variables into homogeneous groups of variables. Additionally we will present a factor analysis model where unobservable factors are just the maximum likelihood estimators of Watson directional parameters, exactly the first principal component of data matrix associated to each group previously identified. Such alternative model it will yield us to directly interpretable solutions (simple structure), avoiding factors rotations.

Keywords: Dynamic Clusters algorithm, EM algorithm, Factor analysis model, Hierarchical Clustering, Watson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
3497 CART Method for Modeling the Output Power of Copper Bromide Laser

Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva

Abstract:

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
3496 Mathematical Modeling for Dengue Transmission with the Effect of Season

Authors: R. Kongnuy., P. Pongsumpun

Abstract:

Mathematical models can be used to describe the transmission of disease. Dengue disease is the most significant mosquito-borne viral disease of human. It now a leading cause of childhood deaths and hospitalizations in many countries. Variations in environmental conditions, especially seasonal climatic parameters, effect to the transmission of dengue viruses the dengue viruses and their principal mosquito vector, Aedes aegypti. A transmission model for dengue disease is discussed in this paper. We assume that the human and vector populations are constant. We showed that the local stability is completely determined by the threshold parameter, 0 B . If 0 B is less than one, the disease free equilibrium state is stable. If 0 B is more than one, a unique endemic equilibrium state exists and is stable. The numerical results are shown for the different values of the transmission probability from vector to human populations.

Keywords: Dengue disease, mathematical model, season, threshold parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
3495 Application of Spreadsheet and Queuing Network Model to Capacity Optimization in Product Development

Authors: Muhammad Marsudi, Dzuraidah Abdul Wahab, Che Hassan Che Haron

Abstract:

Modeling of a manufacturing system enables one to identify the effects of key design parameters on the system performance and as a result to make correct decision. This paper proposes a manufacturing system modeling approach using a spreadsheet model based on queuing network theory, in which a static capacity planning model and stochastic queuing model are integrated. The model was used to improve the existing system utilization in relation to product design. The model incorporates few parameters such as utilization, cycle time, throughput, and batch size. The study also showed that the validity of developed model is good enough to apply and the maximum value of relative error is 10%, far below the limit value 32%. Therefore, the model developed in this study is a valuable alternative model in evaluating a manufacturing system

Keywords: Manufacturing system, product design, spreadsheet model, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899