%0 Journal Article
	%A N. K. Singh and  S. Sarkar
	%D 2011
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 57, 2011
	%T DNS of a Laminar Separation Bubble
	%U https://publications.waset.org/pdf/11403
	%V 57
	%X Direct numerical simulation (DNS) is used to study the evolution of a boundary layer that was laminar initially followed by separation and then reattachment owing to generation of turbulence. This creates a closed region of recirculation, known as the laminar-separation bubble. The present simulation emulates the flow environment encountered in a modern LP turbine blade, where a laminar separation bubble may occur on the suction surface. The unsteady, incompressible three-dimensional (3-D) Navier-Stokes (NS) equations have been solved over a flat plate in the Cartesian coordinates. The adverse pressure gradient, which causes the flow to separate, is created by a boundary condition. The separated shear layer undergoes transition through appearance of ╬ø vortices, stretching of these create longitudinal streaks. Breakdown of the streaks into small and irregular structures makes the flow turbulent downstream.

	%P 1757 - 1761