Search results for: Cascade Correlation Neural Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4094

Search results for: Cascade Correlation Neural Network

2534 Hybrid Honeypot System for Network Security

Authors: Kyi Lin Lin Kyaw

Abstract:

Nowadays, we are facing with network threats that cause enormous damage to the Internet community day by day. In this situation, more and more people try to prevent their network security using some traditional mechanisms including firewall, Intrusion Detection System, etc. Among them honeypot is a versatile tool for a security practitioner, of course, they are tools that are meant to be attacked or interacted with to more information about attackers, their motives and tools. In this paper, we will describe usefulness of low-interaction honeypot and high-interaction honeypot and comparison between them. And then we propose hybrid honeypot architecture that combines low and high -interaction honeypot to mitigate the drawback. In this architecture, low-interaction honeypot is used as a traffic filter. Activities like port scanning can be effectively detected by low-interaction honeypot and stop there. Traffic that cannot be handled by low-interaction honeypot is handed over to high-interaction honeypot. In this case, low-interaction honeypot is used as proxy whereas high-interaction honeypot offers the optimal level realism. To prevent the high-interaction honeypot from infections, containment environment (VMware) is used.

Keywords: Low-interaction honeypot, High-interactionhoneypot, VMware, Proxy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951
2533 Person-Environment Fit (PE Fit): Evidence from Brazil

Authors: Jucelia Appio, Danielle Deimling De Carli, Bruno Henrique Rocha Fernandes, Nelson Natalino Frizon

Abstract:

The purpose of this paper is to investigate if there are positive and significant correlations between the dimensions of Person-Environment Fit (Person-Job, Person-Organization, Person-Group and Person-Supervisor) at the “Best Companies to Work for” in Brazil in 2017. For that, a quantitative approach was used with a descriptive method being defined as a research sample the "150 Best Companies to Work for", according to data base collected in 2017 and provided by Fundação Instituto of Administração (FIA) of the University of São Paulo (USP). About the data analysis procedures, asymmetry and kurtosis, factorial analysis, Kaiser-Meyer-Olkin (KMO) tests, Bartlett sphericity and Cronbach's alpha were used for the 69 research variables, and as a statistical technique for the purpose of analyzing the hypothesis, Pearson's correlation analysis was performed. As a main result, we highlight that there was a positive and significant correlation between the dimensions of Person-Environment Fit, corroborating the H1 hypothesis that there is a positive and significant correlation between Person-Job Fit, Person-Organization Fit, Person-Group Fit and Person-Supervisor Fit.

Keywords: Human resource management, person-environment fit, strategic people management, best companies to work for.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
2532 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array

Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh

Abstract:

Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.

Keywords: Feeding network, laminated waveguide, PIFA, transverse slots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
2531 Wireless Body Area Network’s Mitigation Method Using Equalization

Authors: Savita Sindhu, Shruti Vashist

Abstract:

A wireless body area sensor network (WBASN) is composed of a central node and heterogeneous sensors to supervise the physiological signals and functions of the human body. This overwhelmimg area has stimulated new research and calibration processes, especially in the area of WBASN’s attainment and fidelity. In the era of mobility or imbricated WBASN’s, system performance incomparably degrades because of unstable signal integrity. Hence, it is mandatory to define mitigation techniques in the design to avoid interference. There are various mitigation methods available e.g. diversity techniques, equalization, viterbi decoder etc. This paper presents equalization mitigation scheme in WBASNs to improve the signal integrity. Eye diagrams are also given to represent accuracy of the signal. Maximum no. of symbols is taken to authenticate the signal which in turn results in accuracy and increases the overall performance of the system.

Keywords: Wireless body area network, equalizer, RLS, LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
2530 Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols

Authors: ER. Yashpaul Singh, A. Swarup

Abstract:

This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.

Keywords: Multi-path routing algorithm, Datagram, Virtual Circuit, Throughput, Network services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2529 Evaluation of Protocol Applied to Network Routing WCETT Cognitive Radio

Authors: Nancy Yaneth Gelvez García, Danilo Alfonso López Sarmiento

Abstract:

This article presents the results of researchrelated to the assessment protocol weightedcumulative expected transmission time (WCETT)applied to cognitive radio networks.The development work was based on researchdone by different authors, we simulated a network,which communicates wirelessly, using a licensedchannel, through which other nodes are notlicensed, try to transmit during a given time nodeuntil the station's owner begins its transmission.

Keywords: Cognitive radio, ETT, WCETT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
2528 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
2527 Bayesian Network Based Intelligent Pediatric System

Authors: Jagmohan Mago, Parvinder S. Sandhu, Neeru Chawla

Abstract:

In this paper, a Bayesian Network (BN) based system is presented for providing clinical decision support to healthcare practitioners in rural or remote areas of India for young infants or children up to the age of 5 years. The government is unable to appoint child specialists in rural areas because of inadequate number of available pediatricians. It leads to a high Infant Mortality Rate (IMR). In such a scenario, Intelligent Pediatric System provides a realistic solution. The prototype of an intelligent system has been developed that involves a knowledge component called an Intelligent Pediatric Assistant (IPA); and User Agents (UA) along with their Graphical User Interfaces (GUI). The GUI of UA provides the interface to the healthcare practitioner for submitting sign-symptoms and displaying the expert opinion as suggested by IPA. Depending upon the observations, the IPA decides the diagnosis and the treatment plan. The UA and IPA form client-server architecture for knowledge sharing.

Keywords: Network, Based Intelligent, Pediatric System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
2526 Traffic Signal Coordinated Control Optimization: A Case Study

Authors: Pengdi Diao, Zhuo Wang, Zundong Zhang, Hua Cheng

Abstract:

In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.

Keywords: linear control system; delay mode; signal optimization; synchro6.0 simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
2525 Correlational Analysis between Brain Dominances and Multiple Intelligences

Authors: Lakshmi Dhandabani, Rajeev Sukumaran

Abstract:

Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.

Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2524 Multi-Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges task in such network. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi Agent System (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: Reverse logistics, multi agent system, Prometheus methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
2523 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat

Abstract:

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
2522 Maximizing Sum-Rate for Multi-User Two-Way Relaying Networks with ANC Protocol

Authors: Muhammad Abrar, Xiang Gui, Amal Punchihewa

Abstract:

In this paper we study the resource allocation problem for an OFDMA based cooperative two-way relaying (TWR) network. We focus on amplify and forward (AF) analog network coding (ANC) protocol. An optimization problem for two basic resources namely, sub-carrier and power is formulated for multi-user TWR networks. A joint optimal optimization problem is investigated and two-step low complexity sub-optimal resource allocation algorithm is proposed for multi-user TWR networks with ANC protocol. The proposed algorithm has been evaluated in term of total achievable system sum-rate and achievable individual sum-rate for each userpair. The good tradeoff between system sum-rate and fairness is observed in the two-step proportional resource allocation scheme.

Keywords: Relay Network, Relay Protocols, Resource Allocation, Two –way relaying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2521 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
2520 Service-Oriented Architecture for Object- Centric Information Fusion

Authors: Jeffrey A. Dunne, Kevin Ligozio

Abstract:

In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.

Keywords: Data fusion, distributed computing, service-oriented architecture, SOA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
2519 A New Correlation between SPT and CPT for Various Soils

Authors: Fauzi Jarushi, S. AlKaabim, Paul Cosentino

Abstract:

The Standard Penetration Test (SPT) is the most common in situ test for soil investigations. On the other hand, the Cone Penetration Test (CPT) is considered one of the best investigation tools. Due to the fast and accurate results that can be obtained it complaints the SPT in many applications like field explorations, design parameters, and quality control assessments. Many soil index and engineering properties have been correlated to both of SPT and CPT. Various foundation design methods were developed based on the outcome of these tests. Therefore it is vital to correlate these tests to each other so that either one of the tests can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationships between the SPT and CPT for different type of sandy soils in Florida. Data for this research were collected from number of projects sponsored by the Florida Department of Transportation (FDOT), six sites served as the subject of SPT-CPT correlations. The correlations were established between the cone resistance (qc), sleeve friction (fs) and the uncorrected SPT blow counts (N) for various soils. A positive linear relationship was found between qc, fs and N for various sandy soils. In general, qc versus N showed higher correlation coefficients than fs versus N. qc/N ratios were developed for different soil types and compared to literature values, the results of this research revealed higher ratios than literature values.

Keywords: In situ tests, Correlation, SPT, CPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16574
2518 A Preference-Based Multi-Agent Data Mining Framework for Social Network Service Users' Decision Making

Authors: Ileladewa Adeoye Abiodun, Cheng Wai Khuen

Abstract:

Multi-Agent Systems (MAS) emerged in the pursuit to improve our standard of living, and hence can manifest complex human behaviors such as communication, decision making, negotiation and self-organization. The Social Network Services (SNSs) have attracted millions of users, many of whom have integrated these sites into their daily practices. The domains of MAS and SNS have lots of similarities such as architecture, features and functions. Exploring social network users- behavior through multiagent model is therefore our research focus, in order to generate more accurate and meaningful information to SNS users. An application of MAS is the e-Auction and e-Rental services of the Universiti Cyber AgenT(UniCAT), a Social Network for students in Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia, built around the Belief- Desire-Intention (BDI) model. However, in spite of the various advantages of the BDI model, it has also been discovered to have some shortcomings. This paper therefore proposes a multi-agent framework utilizing a modified BDI model- Belief-Desire-Intention in Dynamic and Uncertain Situations (BDIDUS), using UniCAT system as a case study.

Keywords: Distributed Data Mining, Multi-Agent Systems, Preference-Based, SNS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2517 An Adaptive Fuzzy Clustering Approach for the Network Management

Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani

Abstract:

The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
2516 Simulating Voltage Sag Using PSCAD Software

Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob

Abstract:

Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.

Keywords: Power quality, power network, voltage dip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4345
2515 Evaluation of Haar Cascade Classifiers Designed for Face Detection

Authors: R. Padilla, C. F. F. Costa Filho, M. G. F. Costa

Abstract:

In the past years a lot of effort has been made in the field of face detection. The human face contains important features that can be used by vision-based automated systems in order to identify and recognize individuals. Face location, the primary step of the vision-based automated systems, finds the face area in the input image. An accurate location of the face is still a challenging task. Viola-Jones framework has been widely used by researchers in order to detect the location of faces and objects in a given image. Face detection classifiers are shared by public communities, such as OpenCV. An evaluation of these classifiers will help researchers to choose the best classifier for their particular need. This work focuses of the evaluation of face detection classifiers minding facial landmarks.

Keywords: Face datasets, face detection, facial landmarking, haar wavelets, Viola-Jones detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5409
2514 Sensor Network Based Emergency Response and Navigation Support Architecture

Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan

Abstract:

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
2513 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: Sallem F., Dahhou B., Kamoun A.

Abstract:

In this work, the main problem considered is the  detection and the isolation of the actuator fault. A new formulation of  the linear system is generated to obtain the conditions of the actuator  fault diagnosis. The proposed method is based on the representation  of the actuator as a subsystem connected with the process system in  cascade manner. The designed formulation is generated to obtain the  conditions of the actuator fault detection and isolation. Detectability  conditions are expressed in terms of the invertibility notions. An  example and a comparative analysis with the classic formulation  illustrate the performances of such approach for simple actuator fault  diagnosis by using the linear model of nuclear reactor.

 

Keywords: Actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
2512 Urban Growth, Sewerage Network and Flooding Risk: Flooding of November 10, 2001 in Algiers

Authors: Boualem El Kechebour, Djilali Benouar

Abstract:

The objective of this work is to present a expertise on flooding hazard analysis and how to reduce the risk. The analysis concerns the disaster induced by the flood on November 10/11, 2001 in the Bab El Oued district of the city of Algiers.The study begins by an expertise of damages in related with the urban environment and the history of the urban growth of the site. After this phase, the work is focalized on the identification of the existing correlations between the development of the town and its vulnerability. The final step consists to elaborate the interpretations on the interactions between the urban growth, the sewerage network and the vulnerability of the urban system.In conclusion, several recommendations are formulated permitting the mitigation of the risk in the future. The principal recommendations concern the new urban operations and the existing urbanized sites.

Keywords: urban growth, sewerage network, vulnerability of town, flooding risk, mitigation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2511 NDENet: End-to-End Nighttime Dehazing and Enhancement

Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout

Abstract:

In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.

Keywords: Dehazing, image enhancement, nighttime, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
2510 Understanding Health Behavior Using Social Network Analysis

Authors: Namrata Mishra

Abstract:

Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.

Keywords: Health behaviors, social network analysis, directed graph, breadth first search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2509 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2508 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
2507 Establish a Methodology for Testing and Optimizing GPRS Performance Case Study: Libya GSM

Authors: Mohamed Aburkhiss, Ibrahim Aref

Abstract:

The main goal of this paper is to establish a methodology for testing and optimizing GPRS performance over Libya GSM network as well as to propose a suitable optimization technique to improve performance. Some measurements of download, upload, throughput, round-trip time, reliability, handover, security enhancement and packet loss over a GPRS access network were carried out. Measured values are compared to the theoretical values that could be calculated beforehand. This data should be processed and delivered by the server across the wireless network to the client. The client on the fly takes those pieces of the data and process immediately. Also, we illustrate the results by describing the main parameters that affect the quality of service. Finally, Libya-s two mobile operators, Libyana Mobile Phone and Al-Madar al- Jadeed Company are selected as a case study to validate our methodology.

Keywords: GPRS, performance, optimization, GSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2506 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
2505 Dominating Set Algorithm and Trust Evaluation Scheme for Secured Cluster Formation and Data Transferring

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

This paper describes the proficient way of choosing the cluster head based on dominating set algorithm in a wireless sensor network (WSN). The algorithm overcomes the energy deterioration problems by this selection process of cluster heads. Clustering algorithms such as LEACH, EEHC and HEED enhance scalability in WSNs. Dominating set algorithm keeps the first node alive longer than the other protocols previously used. As the dominating set of cluster heads are directly connected to each node, the energy of the network is saved by eliminating the intermediate nodes in WSN. Security and trust is pivotal in network messaging. Cluster head is secured with a unique key. The member can only connect with the cluster head if and only if they are secured too. The secured trust model provides security for data transmission in the dominated set network with the group key. The concept can be extended to add a mobile sink for each or for no of clusters to transmit data or messages between cluster heads and to base station. Data security id preferably high and data loss can be prevented. The simulation demonstrates the concept of choosing cluster heads by dominating set algorithm and trust evaluation using DSTE. The research done is rationalized.

Keywords: Wireless Sensor Networks, LEECH, EEHC, HEED, DSTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404