Search results for: panel data regression models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9529

Search results for: panel data regression models

8029 Modelling Export Dynamics in the CSEE Countries Using GVAR Model

Authors: S. Jakšić, B. Žmuk

Abstract:

The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spillover effects in the context of globalisation and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.

Keywords: Export, GFEVD, Global VAR, International trade, weak exogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
8028 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
8027 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
8026 Universities Strategic Evaluation Using Balanced Scorecard

Authors: M. D. Nayeri, M. M. Mashhadi, K. Mohajeri

Abstract:

Defining strategic position of the organizations within the industry environment is one of the basic and most important phases of strategic planning to which extent that one of the fundamental schools of strategic planning is the strategic positioning school. In today-s knowledge-based economy and dynamic environment, it is essential for universities as the centers of education, knowledge creation and knowledge worker evolvement. Till now, variant models with different approaches to strategic positioning are deployed in defining the strategic position within the various industries. Balanced Scorecard as one of the powerful models for strategic positioning, analyzes all aspects of the organization evenly. In this paper with the consideration of BSC strength in strategic evaluation, it is used for analyzing the environmental position of the best-s Iranian Business Schools. The results could be used in developing strategic plans for these schools as well as other Iranian Management and Business Schools.

Keywords: Strategic planning, Strategic position, Balancedscorecard, Higher education institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4442
8025 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: Gas condensing unit, filling, inner heat exchanger, package, spraying, tunes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
8024 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt

Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia

Abstract:

In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.

Keywords: Distribution substation, magnetic field, measurement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
8023 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
8022 Secure Data Aggregation Using Clusters in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.

Keywords: Aggregation, Clustering, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
8021 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
8020 An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing

Authors: M. Vatani, A. R. Rahimi, F. Brazandeh, A. Sanati nezhad

Abstract:

Although the STL (stereo lithography) file format is widely used as a de facto industry standard in the rapid prototyping industry due to its simplicity and ability to tessellation of almost all surfaces, but there are always some defects and shortcoming in their usage, which many of them are difficult to correct manually. In processing the complex models, size of the file and its defects grow extremely, therefore, correcting STL files become difficult. In this paper through optimizing the exiting algorithms, size of the files and memory usage of computers to process them will be reduced. In spite of type and extent of the errors in STL files, the tail-to-head searching method and analysis of the nearest distance between tails and heads techniques were used. As a result STL models sliced rapidly, and fully closed contours produced effectively and errorless.

Keywords: Layer manufacturing, STL files, slicing algorithm, nearest distance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4158
8019 The Impact of Digital Inclusive Finance on the High-Quality Development of China's Export Trade

Authors: Yao Wu

Abstract:

In the context of financial globalization, China has put forward the policy goal of high-quality development, and the digital economy, with its advantage of information resources, is driving China's export trade to achieve high-quality development. Due to the long-standing financing constraints of small and medium-sized export enterprises, how to expand the export scale of small and medium-sized enterprises has become a major threshold for the development of China's export trade. This paper firstly adopts the hierarchical analysis method to establish the evaluation system of high-quality development of China's export trade; secondly, the panel data of 30 provinces in China from 2011 to 2018 are selected for empirical analysis to establish the impact model of digital inclusive finance on the high-quality development of China's export trade; based on the analysis of the heterogeneous enterprise trade model, a mediating effect model is established to verify the mediating role of credit constraint in the development of high-quality export trade in China. Based on the above analysis, this paper concludes that inclusive digital finance, with its unique digital and inclusive nature, alleviates the credit constraint problem among SMEs, enhances the binary marginal effect of SMEs' exports, optimizes their export scale and structure, and promotes the high-quality development of regional and even national export trade. Finally, based on the findings of this paper, we propose insights and suggestions for inclusive digital finance to promote the high-quality development of export trade.

Keywords: Digital inclusive finance, high-quality development of export trade, fixed effects, binary marginal effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
8018 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-Car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: Quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206
8017 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
8016 Automatic Generation of OWL Ontologies from UML Class Diagrams Based on Meta- Modelling and Graph Grammars

Authors: Aissam Belghiat, Mustapha Bourahla

Abstract:

Models are placed by modeling paradigm at the center of development process. These models are represented by languages, like UML the language standardized by the OMG which became necessary for development. Moreover the ontology engineering paradigm places ontologies at the center of development process; in this paradigm we find OWL the principal language for knowledge representation. Building ontologies from scratch is generally a difficult task. The bridging between UML and OWL appeared on several regards such as the classes and associations. In this paper, we have to profit from convergence between UML and OWL to propose an approach based on Meta-Modelling and Graph Grammars and registered in the MDA architecture for the automatic generation of OWL ontologies from UML class diagrams. The transformation is based on transformation rules; the level of abstraction in these rules is close to the application in order to have usable ontologies. We illustrate this approach by an example.

Keywords: ATOM3, MDA, Ontology, OWL, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24905
8015 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
8014 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets

Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi

Abstract:

In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.

Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
8013 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
8012 Problem Solving Techniques with Extensive Computational Network and Applying in an Educational Software

Authors: Nhon Do, Tam Pham

Abstract:

Knowledge bases are basic components of expert systems or intelligent computational programs. Knowledge bases provide knowledge, events that serve deduction activity, computation and control. Therefore, researching and developing of models for knowledge representation play an important role in computer science, especially in Artificial Intelligence Science and intelligent educational software. In this paper, the extensive deduction computational model is proposed to design knowledge bases whose attributes are able to be real values or functional values. The system can also solve problems based on knowledge bases. Moreover, the models and algorithms are applied to produce the educational software for solving alternating current problems or solving set of equations automatically.

Keywords: Educational software, artificial intelligence, knowledge base systems, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
8011 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
8010 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: Analytics, telemedicine, internet of things, cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
8009 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion

Authors: S. Sendhil Kumar, S. N. Vijayan

Abstract:

Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.

Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
8008 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Authors: E. Nemati Lay, M. Peymani, E. Sanjari

Abstract:

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
8007 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
8006 A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia

Authors: Fahad Alanazi, Andrew Jones

Abstract:

Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence.

Keywords: Digital forensics, Process, Metadata, Traceback, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
8005 GIS-based Approach for Land-Use Analysis: A Case Study

Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.

Abstract:

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
8004 Can Physical Activity and Dietary Fat Intake Influence Body Mass Index in a Cross-sectional Correlational Design?

Authors: D.O. Omondi, L.O.A. Othuon, G.M. Mbagaya

Abstract:

The purpose of this study was to determine the influence of physical activity and dietary fat intake on Body Mass Index (BMI) of lecturers within a higher learning institutionalized setting. The study adopted a Cross-sectional Correlational Design and included 120 lecturers selected proportionately by simple random sampling techniques from a population of 600 lecturers. Data was collected using questionnaires, which had sections including physical activity checklist adopted from the international physical activity questionnaire (IPAQ), 24-hour food recall, anthropometric measurements mainly weight and height. Analysis involved the use of bivariate correlations and linear regression. A significant inverse association was registered between BMI and duration (in minutes) spent doing moderate intense physical activity per day (r=-0.322, p<0.01). Physical activity also predicted BMI (r2=0.096, F=13.616, β=-3.22, t=-3.69, n=120, P<0.01). However, the association between Body Mass Index and dietary fat was not significant (r=0.038, p>0.05). Physical activity emerged as a more powerful determinant of BMI compared to dietary fat intake.

Keywords: Physical activity, dietary fat intake, Body MassIndex, Kenya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
8003 A New Precautionary Method for Measurement and Improvement the Data Quality

Authors: Seyed Mohammad Hossein Moossavizadeh, Mehran Mohsenzadeh, Nasrin Arshadi

Abstract:

the data quality is a kind of complex and unstructured concept, which is concerned by information systems managers. The reason of this attention is the high amount of Expenses for maintenance and cleaning of the inefficient data. Such a data more than its expenses of lack of quality, cause wrong statistics, analysis and decisions in organizations. Therefor the managers intend to improve the quality of their information systems' data. One of the basic subjects of quality improvement is the evaluation of the amount of it. In this paper, we present a precautionary method, which with its application the data of information systems would have a better quality. Our method would cover different dimensions of data quality; therefor it has necessary integrity. The presented method has tested on three dimensions of accuracy, value-added and believability and the results confirm the improvement and integrity of this method.

Keywords: Data quality, precaution, information system, measurement, improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
8002 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
8001 An Efficient Data Mining Approach on Compressed Transactions

Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung

Abstract:

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

Keywords: Association rule, data mining, merged transaction, quantification table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
8000 Multiple Intelligences Development of Athletes: Examination on Dominant Intelligences

Authors: Wei-ting, Hsu Hong-shih, Chou Wen-chang, Chen

Abstract:

The study attempted to identify the dominant intelligences of athletes by comparing the developmental differences of multiple intelligences between athletes and non-athletes. The weekly specialized training hours and years of specialized training was examined to see how it can predict the dominant intelligence with the age factor controlled. There were 355 participants in the research (202 athletes and 153 non-athletes). Collected data were analyzed with one-way MANOVA and multiple hierarchical regression. The results suggested the dominant intelligences of athletes were Interpersonal Intelligence, Bodily-Kinesthetic Intelligence, and Intrapersonal Intelligence. The weekly specialized training hours and years of specialized training could effectively predict the Interpersonal Intelligence, Bodily-Kinesthetic Intelligence, and Intrapersonal Intelligence of athletes. The author suggested the future studies could focus on the theory construction of weekly specialized training and years of specialized training. Also, the studies on using “Bridge strategy" by the athletes to guide disadvantage intelligences with dominant intelligences are highly valued.

Keywords: non-athletes, academic achievement, Multiple Intelligences Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303