Search results for: Analytic Network Process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7891

Search results for: Analytic Network Process

6391 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
6390 The System Identification and PID Lead-lag Control for Two Poles Unstable SOPDT Process by Improved Relay Method

Authors: V. K. Singh, P. K. Padhy

Abstract:

This paper describes identification of the two poles unstable SOPDT process, especially with large time delay. A new modified relay feedback identification method for two poles unstable SOPDT process is proposed. Furthermore, for the two poles unstable SOPDT process, an additional Derivative controller is incorporated parallel with relay to relax the constraint on the ratio of delay to the unstable time constant, so that the exact model parameters of unstable processes can be identified. To cope with measurement noise in practice, a low pass filter is suggested to get denoised output signal toimprove the exactness of model parameter of unstable process. PID Lead-lag tuning formulas are derived for two poles unstable (SOPDT) processes based on IMC principle. Simulation example illustrates the effectiveness and the simplicity of the proposed identification and control method.

Keywords: IMC structure, PID Lead-lag controller, Relayfeedback, SOPDT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
6389 A Simple Constellation Precoding Technique over MIMO-OFDM Systems

Authors: Fuh-Hsin Hwang, Tsui-Tsai Lin, Chih-Wen Chan, Cheng-Yuan Chang

Abstract:

This paper studies the design of a simple constellation precoding for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system over Rayleigh fading channels where OFDM is used to keep the diversity replicas orthogonal and reduce ISI effects. A multi-user environment with K synchronous co-channel users is considered. The proposed scheme provides a bandwidth efficient transmission for individual users by increasing the system throughput. In comparison with the existing coded MIMO-OFDM schemes, the precoding technique is designed under the consideration of its low implementation complexity while providing a comparable error performance to the existing schemes. Analytic and simulation results have been presented to show the distinguished error performance.

Keywords: coded modulation, diversity technique, OFDM, MIMO, constellation precoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
6388 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
6387 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network

Authors: A. Raminfard, S. M. Shahrtash

Abstract:

In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.

Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3425
6386 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma

Abstract:

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Keywords: MLP, ANN, parameter, prediction, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
6385 Identifying Significant Factors of Brick Laying Process through Design of Experiment and Computer Simulation: A Case Study

Authors: M. H. Zarei, A. Nikakhtar, A. H. Roudsari, N. Madadi, K. Y. Wong

Abstract:

Improving performance measures in the construction processes has been a major concern for managers and decision makers in the industry. They seek for ways to recognize the key factors which have the largest effect on the process. Identifying such factors can guide them to focus on the right parts of the process in order to gain the best possible result. In the present study design of experiment (DOE) has been applied to a computer simulation model of brick laying process to determine significant factors while productivity has been chosen as the response of the experiment. To this end, four controllable factors and their interaction have been experimented and the best factor level has been calculated for each one. The results indicate that three factors, namely, labor of brick, labor of mortar and inter arrival time of mortar along with interaction of labor of brick and labor of mortar are significant.

Keywords: Brick laying process, computer simulation, design of experiment, significant factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
6384 Application of Neural Networks in Power Systems; A Review

Authors: M. Tarafdar Haque, A.M. Kashtiban

Abstract:

The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.

Keywords: Neural network, power system, security assessment, fault diagnosis, load forecasting, economic dispatch, harmonic analyzing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811
6383 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

Authors: Apidet Booranawong

Abstract:

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
6382 Understanding and Predicting Foam in Anaerobic Digester

Authors: I. R. Kanu, T. J. Aspray, A. J. Adeloye

Abstract:

As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has not fully explained the conditions and process of foaming in anaerobic digester. Studying the current available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this piece of work presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.

Keywords: Anaerobic digester, foam, biogas, surfactants, wastewater sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972
6381 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
6380 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: Cognitive radio, neural network, prediction, primary user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
6379 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMAL2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
6378 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: Advanced oxidation processes, chemical oxygen demand, COD, detergent, peroxi electrocoagulation process, PEP, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
6377 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: Exciton, Refractive index change, Extinction ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
6376 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: Educational data visualization, high-level petri nets, instructional design, learning analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
6375 Intelligent Network-Based Stepping Stone Detection Approach

Authors: Mohd Nizam Omar, Rahmat Budiarto

Abstract:

This research intends to introduce a new usage of Artificial Intelligent (AI) approaches in Stepping Stone Detection (SSD) fields of research. By using Self-Organizing Map (SOM) approaches as the engine, through the experiment, it is shown that SOM has the capability to detect the number of connection chains that involved in a stepping stones. Realizing that by counting the number of connection chain is one of the important steps of stepping stone detection and it become the research focus currently, this research has chosen SOM as the AI techniques because of its capabilities. Through the experiment, it is shown that SOM can detect the number of involved connection chains in Network-based Stepping Stone Detection (NSSD).

Keywords: Artificial Intelligent, Self-Organizing Map (SOM), Stepping Stone Detection, Tracing Intruder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
6374 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier

Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron

Abstract:

In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.

Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
6373 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
6372 The Performance Improvement of the Target Position Determining System in Laser Tracking Based on 4Q Detector using Neural Network

Authors: A. Salmanpour, Sh. Mohammad Nejad

Abstract:

One of the methods for detecting the target position error in the laser tracking systems is using Four Quadrant (4Q) detectors. If the coordinates of the target center is yielded through the usual relations of the detector outputs, the results will be nonlinear, dependent on the shape, target size and its position on the detector screen. In this paper we have designed an algorithm with using neural network that coordinates of the target center in laser tracking systems is calculated by using detector outputs obtained from visual modeling. With this method, the results except from the part related to the detector intrinsic limitation, are linear and dependent from the shape and target size.

Keywords: four quadrant detector, laser tracking system, rangefinder, tracking sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
6371 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: Cloud network, collaboration, Internet of Things, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
6370 Change Management in Business Process Modeling Based on Object Oriented Petri Net

Authors: Bassam Atieh Rajabi, Sai Peck Lee

Abstract:

Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.

Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
6369 Survey on Handover Security Issues in WiMAX Networks

Authors: R. Chithra, B. Kalaavathi, K. S. Aruna Shivani

Abstract:

Worldwide Interoperability for Microwave Access, is a broadband technology, which can effectively transmit a data across a group of users using Multicast and Broadcast Service. WiMAX belongs to a family of (IEEE 802.16) standards and is evolving as a fourth generation technology. WiMAX is the next generation technology that offers wireless access over long distances. MBS zone, which is a group of base stations that are broadcasting the same multicast packets which defines Multicast and Broadcast services. Handover is a process of transferring an ongoing call or data session from one channel connected to the core network to another channel. The handover causes authentication, delay, packet loss, jitter that mainly affects the communication. In this paper, we present a survey on handover security issues in WiMAX.

Keywords: WiMAX, Handover, Multicast and Broadcast Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
6368 Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
6367 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum

Abstract:

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.

This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
6366 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
6365 Using Ferry Access Points to Improve the Performance of Message Ferrying in Delay-Tolerant Networks

Authors: Farzana Yasmeen, Md. Nurul Huda, Md. Enamul Haque, Michihiro Aoki, Shigeki Yamada

Abstract:

Delay-Tolerant Networks (DTNs) are sparse, wireless networks where disconnections are common due to host mobility and low node density. The Message Ferrying (MF) scheme is a mobilityassisted paradigm to improve connectivity in DTN-like networks. A ferry or message ferry is a special node in the network which has a per-determined route in the deployed area and relays messages between mobile hosts (MHs) which are intermittently connected. Increased contact opportunities among mobile hosts and the ferry improve the performance of the network, both in terms of message delivery ratio and average end-end delay. However, due to the inherent mobility of mobile hosts and pre-determined periodicity of the message ferry, mobile hosts may often -miss- contact opportunities with a ferry. In this paper, we propose the combination of stationary ferry access points (FAPs) with MF routing to increase contact opportunities between mobile hosts and the MF and consequently improve the performance of the DTN. We also propose several placement models for deploying FAPs on MF routes. We evaluate the performance of the FAP placement models through comprehensive simulation. Our findings show that FAPs do improve the performance of MF-assisted DTNs and symmetric placement of FAPs outperforms other placement strategies.

Keywords: Service infrastructure, delay-tolerant network, messageferry routing, placement models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
6364 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: Artificial neural network, back-propagation, tide data, training algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
6363 Classification and Resolving Urban Problems by Means of Fuzzy Approach

Authors: F. Habib, A. Shokoohi

Abstract:

Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.

Keywords: Classification, complexity, Fuzzy theory, urban problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
6362 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: Artificial neural network, load estimation, regional survey, rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361