Search results for: edge detection.
368 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.
Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599367 Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging
Authors: Lijiang Wang, Wei Wang, Yuhong Xu
Abstract:
Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and decreasing the absorption and scattering in biological tissues are as yet unresolved problems. In this present study, a novel NIR-reflected multispectral imaging system was developed for upconversion fluorescent imaging in small animals. Based on this system, we have obtained the high contrast images without the autofluorescence when biocompatible UCPs were injected near the body surface or deeply into the tissue. Furthermore, we have extracted respective spectra of the upconversion fluorescence and relatively quantify the fluorescence intensity with the multispectral analysis. To our knowledge, this is the first time to analyze and quantify the upconversion fluorescence in the small animal imaging.
Keywords: Multispectral imaging, near-infrared, upconversion fluorescence imaging, upconversion nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716366 Precombining Adaptive LMMSE Detection for DS-CDMA Systems in Time Varying Channels: Non Blind and Blind Approaches
Authors: M. D. Kokate, T. R. Sontakke, P. W. Wani
Abstract:
This paper deals with an adaptive multiuser detector for direct sequence code division multiple-access (DS-CDMA) systems. A modified receiver, precombinig LMMSE is considered under time varying channel environment. Detector updating is performed with two criterions, mean square estimation (MSE) and MOE optimization technique. The adaptive implementation issues of these two schemes are quite different. MSE criterion updates the filter weights by minimizing error between data vector and adaptive vector. MOE criterion together with canonical representation of the detector results in a constrained optimization problem. Even though the canonical representation is very complicated under time varying channels, it is analyzed with assumption of average power profile of multipath replicas of user of interest. The performance of both schemes is studied for practical SNR conditions. Results show that for poor SNR, MSE precombining LMMSE is better than the blind precombining LMMSE but for greater SNR, MOE scheme outperforms with better result.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495365 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato
Abstract:
We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.
Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092364 Kinetic Spectrophotometric Determination of Ramipril in Commercial Dosage Forms
Authors: Nafisur Rahman, Habibur Rahman, Syed Najmul Hejaz Azmi
Abstract:
This paper presents a simple and sensitive kinetic spectrophotometric method for the determination of ramipril in commercial dosage forms. The method is based on the reaction of the drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 100 ± 1ºC. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Fixed-time (ΔA) and equilibrium methods are adopted for constructing the calibration curves. Both the calibration curves were found to be linear over the concentration ranges 20 - 220 μg/ml. The regression analysis of calibration data yielded the linear equations: Δ A = 6.30 × 10-4 + 1.54 × 10-3 C and A = 3.62 × 10-4 + 6.35 × 10-3 C for fixed time (Δ A) and equilibrium methods, respectively. The limits of detection (LOD) for fixed time and equilibrium methods are 1.47 and 1.05 μg/ml, respectively. The method has been successfully applied to the determination of ramipril in commercial dosage forms. Statistical comparison of the results shows that there is no significant difference between the proposed methods and Abdellatef-s spectrophotometric method.Keywords: Equilibrium method, Fixed-time (ΔA) method, Ramipril, Spectrophotometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303363 Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals
Authors: Michal Natora, Felix Franke, Klaus Obermayer
Abstract:
Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.
Keywords: Adaptive matched filter, minimum variance distortionless response, beam forming, Capon beam former, linear filters, performance measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524362 Conducting Flow Measurement Laboratory Test Work
Authors: M. B. Kime
Abstract:
Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.
Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4945361 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: Data quality, feature selection, probability distribution, string classification, string length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328360 Semi-automatic Background Detection in Microscopic Images
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini
Abstract:
The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.
Keywords: Microscopy, flat field correction, background estimation, image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837359 Microscopic Analysis of Welded Dental Alloys
Authors: S. Porojan, L. Sandu, F. Topalâ
Abstract:
Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925358 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta
Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari
Abstract:
This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460357 Validation of an EEG Classification Procedure Aimed at Physiological Interpretation
Authors: M. Guillard, M. Philippe, F. Laurent, J. Martinerie, J. P. Lachaux, G. Florence
Abstract:
One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.
Keywords: Classification, EEG Synchrony, alpha, resting situation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457356 Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks
Authors: Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim
Abstract:
This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.
Keywords: sensor network, intelligent farm, middleware, event detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358355 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods
Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis
Abstract:
The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.
Keywords: Elastostatic, inverse problem, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877354 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network
Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman
Abstract:
Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144353 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours
Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic
Abstract:
Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.
Keywords: player number, soccer video, HSV color space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989352 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control
Authors: N. H. Mvungi
Abstract:
Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.Keywords: Sensorless, SR motor, saturation effects, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190351 Estimation of Skew Angle in Binary Document Images Using Hough Transform
Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar
Abstract:
This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268350 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.
Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779349 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: Ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924348 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method
Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang
Abstract:
Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.
Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064347 A New Performance Characterization of Transient Analysis Method
Authors: José Peralta, Gabriela Peretti, Eduardo Romero, Carlos Marqués
Abstract:
This paper proposes a new performance characterization for the test strategy intended for second order filters denominated Transient Analysis Method (TRAM). We evaluate the ability of the addressed test strategy for detecting deviation faults under simultaneous statistical fluctuation of the non-faulty parameters. For this purpose, we use Monte Carlo simulations and a fault model that considers as faulty only one component of the filter under test while the others components adopt random values (within their tolerance band) obtained from their statistical distributions. The new data reported here show (for the filters under study) the presence of hard-to-test components and relatively low fault coverage values for small deviation faults. These results suggest that the fault coverage value obtained using only nominal values for the non-faulty components (the traditional evaluation of TRAM) seem to be a poor predictor of the test performance.
Keywords: testing, fault analysis, analog filter test, parametric faults detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465346 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.
Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686345 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715344 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599343 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.
Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341342 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.
Keywords: Medical Image Watermarking (MIW), e-health system, error correction, Hamming code, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745341 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(VI) Ions in Industrial Effluents
Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi
Abstract:
Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N,N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by flame atomic absorption spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300mg; flow rates 2.0mL min-1 of solution and 2.0mL min-1 of eluent (2.0mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.
Keywords: Styrofoam waste, Polymeric resin, Preconcentration, Speciation, Cr(III)/Cr(VI) ions, FAAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577340 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.
Keywords: Hyperion, hyperspectral, sensor, Landsat-8.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626339 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292