Search results for: Mass attenuation coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1955

Search results for: Mass attenuation coefficient

485 Modeling and Experimental Studies on Solar Crop Dryer Coupled with Reversed Absorber Type Solar Air Heater

Authors: Vijay R. Khawale, Shashank B. Thakare

Abstract:

The experiment was carried out to study the performance of solar crop dryer coupled with reversed absorber type solar air heater (SD2). Excel software is used to analyse the raw data obtained from the drying experiment to develop a model. An attempt is made in this paper to correlate the collector efficiency, dryer efficiency and pick-up efficiency. All these efficiencies are dependent on the parameters such as solar flux, ambient temperature, collector outlet temperature and moisture content. The simulation equation was developed to predict the values of collector efficiency. The parameters a, n and drying constant k were determined from a plot of curve using a drying models. Experimental data of drying red chili in conventional solar dryer and solar dryer coupled with reversed absorber solar air heater was compared by fitting with three drying models. The moisture content will be rapidly reduced in solar dryer with reversed absorber due to higher drying temperatures. The best fit model was selected to describe the drying behavior of red chili. For SD2 the values of the coefficient of determination (R2=0.997), mean bias error (MBE=0.00026) and root mean square error (RMSE=0.016) were used to determine the goodness or the quality of the fit. Pages model showed a better fit to drying red chili among Newton model and Henderson & Pabis model.

Keywords: Solar dryer, red chili, reversed absorber, reflector, Buckingham pi theorem, drying model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
484 Investigation of the Effect of Teaching a Thinking and Research Lesson by Cooperative and Traditional Methods on the Creativity of Sixth Grade Students

Authors: Faroogh Khakzad, Marzieh Dehghani, Elahe Hejazi

Abstract:

The present study investigates the effect of teaching a Thinking and Research lesson by cooperative and traditional methods on the creativity of sixth-grade students in Piranshahr province. The statistical society includes all the sixth-grade students of Piranshahr province. The sample of this studytable was selected by available sampling from among male elementary schools of Piranshahr. They were randomly assigned into two groups of cooperative teaching method and traditional teaching method. The design of the study is quasi-experimental with a control group. In this study, to assess students’ creativity, Abedi’s creativity questionnaire was used. Based on Cronbach’s alpha coefficient, the reliability of the factor flow was 0.74, innovation was 0.61, flexibility was 0.63, and expansion was 0.68. To analyze the data, t-test, univariate and multivariate covariance analysis were used for evaluation of the difference of means and the pretest and posttest scores. The findings of the research showed that cooperative teaching method does not significantly increase creativity (p > 0.05). Moreover, cooperative teaching method was found to have significant effect on flow factor (p < 0.05), but in innovation and expansion factors no significant effect was observed (p < 0.05).

Keywords: Cooperative teaching method, traditional teaching method, creativity, flow, innovation, flexibility, expansion, thinking and research lesson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
483 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
482 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong

Abstract:

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
481 A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market

Authors: Mei-Se Chien, Chien-Chiang Lee, Sin-Jie Cai

Abstract:

The main purpose of this paper is to investigate thelong-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run.Furthermore, the increasing economic activity and the construction cost would cause strongerimpacts on the house prices for lower income countries than higher income countries.The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions.

Keywords: House prices, Macroeconomic Variables, Panel cointegration, Dynamic OLS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5132
480 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
479 Removal of Chlorinated Resin and Fatty Acids from Paper Mill wastewater through Constructed Wetland

Authors: Ashutosh Kumar Choudhary, Satish Kumar, Chhaya Sharma

Abstract:

This study evaluates the performance of horizontal subsurface flow constructed wetland (HSSF-CW) for the removal of chlorinated resin and fatty acids (RFAs) from pulp and paper mill wastewater. The dimensions of the treatment system were 3.5 m x 1.5 m x 0.28 m with surface area of 5.25 m2, filled with fine sand and gravel. The cell was planted with an ornamental plant species Canna indica. The removal efficiency of chlorinated RFAs was in the range of 92-96% at the hydraulic retention time (HRT) of 5.9 days. Plant biomass and soil (sand and gravel) were analyzed for chlorinated RFAs content. No chlorinated RFAs were detected in plant biomass but detected in soil samples. Mass balance studies of chlorinated RFAs in HSSF-CW were also carried out.

Keywords: Canna indica, Chlorinated resin & fatty acids, Constructed wetland, Pulp and paper mill wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
478 The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment

Authors: W. K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

Abstract:

A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.

Keywords: Alternative fuels, Cement kiln main burner, Oxygen enrichment, Production capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5493
477 Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
476 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: Cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
475 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: Transient process, synchronous motor, excitation mode, regulator, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
474 Capsule-substrate Adhesion in the Presence of Osmosis by the Immersed Interface Method

Authors: P.G. Jayathilake, B.C. Khoo, Zhijun Tan

Abstract:

A two-dimensional thin-walled capsule of a flexible semi-permeable membrane is adhered onto a rigid planar substrate under adhesive forces (derived from a potential function) in the presence of osmosis across the membrane. The capsule is immersed in a hypotonic and diluted binary solution of a non-electrolyte solute. The Stokes flow problem is solved by the immersed interface method (IIM) with equal viscosities for the enclosed and surrounding fluid of the capsule. The numerical results obtained are verified against two simplified theoretical solutions and the agreements are good. The osmotic inflation of the adhered capsule is studied as a function of the solute concentration field, hydraulic conductivity, and the initial capsule shape. Our findings indicate that the contact length shrinks in dimension as capsule inflates in the hypotonic medium, and the equilibrium contact length does not depend on the hydraulic conductivity of the membrane and the initial shape of the capsule.

Keywords: Capsule-substrate adhesion, Fluid mechanics, Immersed interface method, Osmosis, Mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
473 Flexible Laser Reduced Graphene Oxide/ MnO2 Electrode for Supercapacitor Applications

Authors: Ingy N. Bkrey, Ahmed A. Moniem

Abstract:

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Keywords: Electrode Deposition, Flexible, Graphene oxide, Graphene, High Power CO2 Laser, MnO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3679
472 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
471 Power of Doubling: Population Growth and Resource Consumption

Authors: Sarika Bahadure

Abstract:

Sustainability starts with conserving resources for future generations. Since human’s existence on this earth, he has been consuming natural resources. The resource consumption pace in the past was very slow, but industrialization in 18th century brought a change in the human lifestyle. New inventions and discoveries upgraded the human workforce to machines. The mass manufacture of goods provided easy access to products. In the last few decades, the globalization and change in technologies brought consumer oriented market. The consumption of resources has increased at a very high scale. This overconsumption pattern brought economic boom and provided multiple opportunities, but it also put stress on the natural resources. This paper tries to put forth the facts and figures of the population growth and consumption of resources with examples. This is explained with the help of the mathematical expression of doubling known as exponential growth. It compares the carrying capacity of the earth and resource consumption of humans’ i.e. ecological footprint and bio-capacity. Further, it presents the need to conserve natural resources and re-examine sustainable resource use approach for sustainability.

Keywords: Consumption, exponential growth, population, resources, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
470 Development and Initial Validation of the Social Competency Inventory for Tertiary Level Faculty Members

Authors: Glenn M. Calaguas, Carmela S. Dizon

Abstract:

This study aimed to develop and initially validate an instrument that measures social competency among tertiary level faculty members. A review of extant literature on social competence was done. The review of extant literature led to the writing of the items in the initial instrument which was evaluated by 11 Subject Matter Experts (SMEs). The SMEs were either educators or psychologists. The results of the evaluations done by the SMEs served as bases for the creation of the pre-try-out instrument used in the first trial-run. Insights from the first trial-run participants led to the development of the main try-out instrument used in the final test administration. One Hundred Forty-one participants from five private Higher Education Institutions (HEIs) in the National Capital Region (NCR) and five private HEIs in Central Luzon in the Philippines participated in the final test administration. The reliability of the instrument was evaluated using Cronbach-s Coefficient Alpha formula and had a Cronbach-s Alpha of 0.92. On the other hand, Factor Analysis was used to evaluate the validity of the instrument and six factors were identified. The development of the final instrument was based on the results of the evaluation of the instrument-s reliability and validity. For purposes of recognition, the instrument was named “Social Competency Inventory for Tertiary Level Faculty Members (SCI-TLFM)."

Keywords: development, initial validation, social competency, tertiary level faculty members

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
469 Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method

Authors: S. Ul. Islam, H. Rahman, W. S. Abbasi, N. Rathore

Abstract:

In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.

Keywords: Blockage ratio, Multi-relaxation-time lattice Boltzmann method, Square cylinder, Vortex formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
468 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
467 An Experimental Study on Effects of Applying the Pulsating Flow to a Gas-Solid Fluidized Bed

Authors: Rezvan Alamian, Alireza Baniassadi, Hassan Basirat Tabrizi

Abstract:

There have been widespread applications of fluidized beds in industries which are related to the combination of gas-solid particles during the last decade. For instance, in order to crack the catalyses in petrochemical industries or as a drier in food industries. High capacity of fluidized bed in heat and mass transfer has made this device very popular. In order to achieve a higher efficiency of fluidized beds, a particular attention has been paid to beds with pulsating air flow. In this paper, a fluidized bed device with pulsating flow has been designed and constructed. Size of particles have been used during the test are in the range of 40 to 100μm. The purpose of this experimental test is to investigate the air flow regime, observe the particles- movement and measure the pressure loss along the bed. The effects of pulsation can be evaluated by comparing the results for both continuous and pulsating flow. Results of both situations are compared for various gas speeds. Moreover the above experiment is numerically simulated by using Fluent software and its numerical results are compared with the experimental results.

Keywords: Fluidized bed, pulsating flow, gas-solid particles, pressure loss, experiments, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
466 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter

Abstract:

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Keywords: Composite, development, hybrid, innovation, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
465 The Mechanistic and Oxidative Study of Methomyl and Parathion Degradation by Fenton Process

Authors: Chihhao Fan, Ming-Chu Liao

Abstract:

The purpose of this study is to investigate the chemical degradation of the organophosphorus pesticide of parathion and carbamate insecticide of methomyl in the aqueous phase through Fenton process. With the employment of batch Fenton process, the degradation of the two selected pesticides at different pH, initial concentration, humic acid concentration, and Fenton reagent dosages was explored. The Fenton process was found effective to degrade parathion and methomyl. The optimal dosage of Fenton reagents (i.e., molar concentration ratio of H2O2 to Fe2+) at pH 7 for parathion degradation was equal to 3, which resulted in 50% removal of parathion. Similarly, the optimal dosage for methomyl degradation was 1, resulting in 80% removal of methomyl. This study also found that the presence of humic substances has enhanced pesticide degradation by Fenton process significantly. The mass spectroscopy results showed that the hydroxyl free radical may attack the single bonds with least energy of investigated pesticides to form smaller molecules which is more easily to degrade either through physio-chemical or bilolgical processes.

Keywords: Fenton Process, humic acid, methomyl, parathion, pesticides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
464 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741
463 Physical and Mechanical Performance of Mortars with Ashes from Straw and Bagasse Sugarcane

Authors: Débora C. G. Oliveira, Julio D. Salles, Bruna A. Moriy, João A. Rossignolo, Holmer Savastano JR.

Abstract:

The objective of this study was to identify the optimal level of partial replacement of Portland cement by the ashes originating from burning straw and bagasse from sugar cane (ASB). Order to this end, were made five series of flat plates and cylindrical bodies: control and others with the partial replacement in 20, 30, 40 and 50% of ASB in relation to the mass of the Ordinary Portland cement, and conducted a mechanical testing of simple axial compression (cylindrical bodies) and the four-point bending (flat plates) and determined water absorption (WA), bulk density (BD) and apparent void volume (AVV) on both types of specimens. Based on the data obtained, it may be noted that the control treatment containing only Portland cement, obtained the best results. However, the cylindrical bodies with 20% ashes showed better results compared to the other treatments. And in the formulations plates, the treatment which showed the best results was 30% cement replacement by ashes.

Keywords: Modulus of rupture, simple axial compression, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
462 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
461 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518
460 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: Bentonite, zeolite, leachate, shear strength parameters, unconfined compression tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
459 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
458 Relationship of Sleep Duration with Obesity and Dietary Intake

Authors: Seyed Ahmad Hosseini, Makan Cheraghpour, Saeed Shirali, Roya Rafie, Matin Ghanavati, Arezoo Amjadi, Meysam Alipour

Abstract:

Background: There is a mutual relationship between sleep duration and obesity. We studied the relationship between sleep duration with obesity and dietary Intake. Methods: This cross-sectional study was conducted on 444 male students in Ahvaz Jundishapur University of Medical Science. Dietary intake was analyzed by food frequency questionnaire (FFQ). Anthropometric indices were analyzed. Participants were being asked about their sleep duration and they were categorized into three groups according to their responses (less than six hours, between six and eight hours, and more than eight hours). Results: Macronutrient, micronutrient, and antioxidant intake did not show significant difference between three groups. Moreover, we did not observe any significant difference between anthropometric indices (weight, body mass index, waist circumference, and percentage body fat). Conclusions: Our study results show no significant relationship between sleep duration, nutrition pattern, and obesity. Further study is recommended.

Keywords: Sleep duration, obesity, dietary intake, cross-sectional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
457 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent

Authors: Ali Ghiaseddin , Akram Nemati

Abstract:

In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.

Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
456 The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition

Authors: S. Sobhanian, H. Naghshara, N. Sadeghi, S. Khorram

Abstract:

The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.

Keywords: Deposition rate, Resonance Optical Absorption, Sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348