Search results for: training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 982

Search results for: training

862 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
861 Resistance Training as a Powerful Tool in the Prevention and Treatment of Cardiovascular Diseases

Authors: I. Struhár, L. Dovrtělová, M. Kumstát

Abstract:

Regular exercise promotes reduction in blood pressure, reduction in body weight and it also helps to increase in insulin sensitivity. Participation in physical activity should always be linked to medical screening which can reveal serious medical problems. One of them is high blood pressure. Hypertension is risk factor for one billion people worldwide and the highest prevalence is found in Africa. Another component of hypertension is that people who suffer from hypertension have no symptoms. It is estimated that reduction of 3mm Hg in Systolic Blood Pressure decreases cardiac morbidity at least 5%. The most of the guidelines suggest aerobic exercise in a prevention of cardiovascular diseases. On the other hand, it is important to emphasize the impact of resistance training. Even, it was found higher effect for reduction on the level of systolic blood pressure than aerobic exercise.

Keywords: Coronary artery disease, physical activity, prevention, resistance training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
860 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
859 Teacher Training Course: Conflict Resolution through Mediation

Authors: Csilla M. Szabó

Abstract:

In Hungary, the society has changed a lot for the past 25 years, and these changes could be detected in educational situations as well. The number and the intensity of conflicts have been increased in most fields of life, as well as at schools. Teachers have difficulties to be able to handle school conflicts. What is more, the new net generation, generation Z has values and behavioural patterns different from those of the previous one, which might generate more serious conflicts at school, especially with teachers who were mainly socialising in a traditional teacher – student relationship. In Hungary, the bill CCIV of 2011 declared the foundation of Institutes of Teacher Training in higher education institutes. One of the tasks of the Institutes is to survey the competences and needs of teachers working in public education and to provide further trainings and services for them according to their needs and requirements. This job is supported by the Social Renewal Operative Programs 4.1.2.B. The professors of a college carried out a questionnaire and surveyed the needs and the requirements of teachers working in the region. Based on the results, the professors of the Institute of Teacher Training decided to meet the requirements of teachers and to launch short teacher further training courses in spring 2015. One of the courses is going to focus on school conflict management through mediation. The aim of the pilot course is to provide conflict management techniques for teachers and to present different mediation techniques to them. The theoretical part of the course (5 hours) will enable participants to understand the main points and the advantages of mediation, while the practical part (10 hours) will involve teachers in role plays to learn how to cope with conflict situations applying mediation. We hope if conflicts could be reduced, it would influence school atmosphere in a positive way and the teaching – learning process could be more successful and effective.

Keywords: Conflict resolution, generation Z, mediation, teacher training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
858 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
857 Unmet English Needs of the Non-Engineering Staff: The Case of Algerian Hydrocarbon Industry

Authors: N. Khiati

Abstract:

The present paper attempts to report on some findings that emerged out of a larger scale doctorate research into English language needs of a renowned Algerian company of Hydrocarbon industry. From a multifaceted English for specific purposes (ESP) research perspective, the paper considers the English needs of the finance/legal department staff in the midst of the conflicting needs perspectives involving both objective needs indicators (i.e., the pressure of globalised business) and the general negative attitudes among the administrative -mainly jurists- staff towards English (favouring a non-adaptation strategy). The researcher’s unearthing of the latter’s needs is an endeavour to concretise the concepts of unmet, or unconscious needs, among others. This is why, these initially uncovered hidden needs will be detailed questioning educational background, namely previous language of instruction; training experiences and expectations; as well as the actual communicative practices derived from the retrospective interviews and preliminary quantitative data of the questionnaire. Based on these rough clues suggesting real needs, the researcher will tentatively propose some implications for both pre-service and in-service training organisers as well as for educational policy makers in favour of an English course in legal English for the jurists mainly from pre-graduate phases to in-service training.

Keywords: English for specific purposes, ESP, legal and finance staff, needs analysis, unmet/unconscious needs, training implications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
856 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, “Transformation of Teaching and Learning the Fun Way”. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get the validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi- structured interviews were also administrated to collect qualitative data on participants’ experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the “The fun way approach” in conducting training program in future.

Keywords: Teaching and Learning, Motivation, Teacher Trainer, SDT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
855 The Effects of the Parent Training Program for Obesity Reduction on Health Behaviors of School-Age Children

Authors: Muntanavadee Maytapattana

Abstract:

The purposes of the study were to evaluate the effectiveness of the Parent Training Program for Obesity Reduction (PTPOR) on health behaviors of school-age children. An Ecological Systems Theory (EST) was approached the study and a randomized control trial was used in this study. Participants were school-age overweight or obese children and their parents. One hundred and one parent-child dyads were recruited and random assigned into the PTPOR (N=30), Educational Intervention or EI (N=32), and control group (N=39). The parents in the PTPOR group participated in five sessions including an educational session, a cooking session, aerobic exercise training, 2-time group discussion sessions, and 4-time telephoned counseling sessions. Repeated Measure ANCOVA was used to analyze data. The results presented that the outcomes of the PTPOR group were better than the EI and the control groups at 1st, 8th, and 32nd weeks after finishing the program such as child exercise behavior (F(2,97) = 3.98, p = .02) and child dietary behavior (F(2,97) = 9.42, p = .00). The results suggest that nurses and health care providers should utilize the PTPOR for child weight reduction and for the health promotion of a lifestyle among overweight and obese children.

Keywords: Parent training program for obesity reduction, child health behaviors, school-age children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
854 Development of Cross Curricular Competences in University Classrooms - Public Speaking

Authors: M. T. Becerra, F. Martín, P. Gutiérrez, S. Cubo, E. Iglesias, A. A. Sáenz del Castillo, P. Cañamero

Abstract:

The consolidation of the European Higher Education Area (EHEA) in universities has led to significant changes in student training. This paper, part of a Teaching Innovation Project, starts from new training requirements that are fit within Undergraduate Thesis Project, a subject that culminate student learning. Undergraduate Thesis Project is current assessment system that weigh the student acquired training in university education. Students should develop a range of cross curricular competences such as public presentation of ideas, problems and solutions both orally and writing in Undergraduate Thesis Project. Specifically, we intend with our innovation proposal to provide resources that enable university students from Teacher Degree in Education Faculty of University of Extremadura (Spain) to develop the cross curricular competence of public speaking.

Keywords: Interaction, Public Speaking, Student, University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
853 Perceptions of Cybersecurity in Government Organizations: Case Study of Bhutan

Authors: Pema Choejey, David Murray, Chun Che Fung

Abstract:

Bhutan is becoming increasingly dependent on Information and Communications Technologies (ICTs), especially the Internet for performing the daily activities of governments, businesses, and individuals. Consequently, information systems and networks are becoming more exposed and vulnerable to cybersecurity threats. This paper highlights the findings of the survey study carried out to understand the perceptions of cybersecurity implementation among government organizations in Bhutan. About 280 ICT personnel were surveyed about the effectiveness of cybersecurity implementation in their organizations. A questionnaire based on a 5 point Likert scale was used to assess the perceptions of respondents. The questions were asked on cybersecurity practices such as cybersecurity policies, awareness and training, and risk management. The survey results show that less than 50% of respondents believe that the cybersecurity implementation is effective: cybersecurity policy (40%), risk management (23%), training and awareness (28%), system development life cycle (34%); incident management (26%), and communications and operational management (40%). The findings suggest that many of the cybersecurity practices are inadequately implemented and therefore, there exist a gap in achieving a required cybersecurity posture. This study recommends government organizations to establish a comprehensive cybersecurity program with emphasis on cybersecurity policy, risk management, and awareness and training. In addition, the research study has practical implications to both government and private organizations for implementing and managing cybersecurity.

Keywords: Awareness and training, cybersecurity, cybersecurity policy, risk management, security risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
852 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training

Authors: D. Uma Devi, P. Seetha Ramaiah

Abstract:

Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.

Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
851 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs

Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald

Abstract:

Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.

Keywords: Education and training, capacity building, evaluation, water and sanitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
850 Chase Trainer Exercise Program in Athlete with Unilateral Patellofemoral Pain Syndrome (PFPS)

Authors: Asha Hasnimy Mohd Hashim, Lee Ai Choo

Abstract:

We investigated the effects of modified preprogrammed training mode Chase Trainer from Balance Trainer (BT3, HurLab, Tampere, Finland) on athlete who experienced unilateral Patellofemoral Pain Syndrome (PFPS). Twenty-seven athletes with mean age= 14.23 ±1.31 years, height = 164.89 ± 7.85 cm, weight = 56.94 ± 9.28 kg were randomly assigned to two groups: experiment (EG; n = 14) and injured (IG; n = 13). EG performed a series of Chase Trainer program which required them to shift their body weight at different directions, speeds and angle of leaning twice a week for duration of 8 weeks. The static postural control and perceived pain level measures were taken at baseline, after 6 weeks and 8 weeks of training. There was no significant difference in any of tested variables between EG and IG before and after 6-week the intervention period. However, after 8-week of training, the postural control (eyes open) and perceived pain level of EG improved compared to IG (p<0.05). The postural control with eyes closed of EG improved (p<0.05) but the values were not significantly different compared to IG after training. The results suggest that using Chase Trainer exercise program it is possible to improve individual postural control and decreased perceived pain level in athlete with unilateral Patellofemoral Pain Syndrome (PFPS).

Keywords: Patellofemoral Pain Syndrome, perceived pain level, postural control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
849 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
848 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: Centrifuge, g-loc, military, pilot, sickness, simulator, VMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
847 The Effects of Whole-Body Vibration Training on Jump Performance in Handball Athletes

Authors: Yen-Ting Wang, Shou-Jing Guo, Hsiu-Kuang Chang, Kenny Wen-Chyuan Chen, Alex J.Y. Lee

Abstract:

This study examined the effects of eight weeks of whole-body vibration training (WBVT) on vertical and decuple jump performance in handball athletes. Sixteen collegiate Level I handball athletes volunteered for this study. They were divided equally as control group and experimental group (EG). During the period of the study, all athletes underwent the same handball specific training, but the EG received additional WBVT (amplitude: 2 mm, frequency: 20 - 40 Hz) three time per week for eight consecutive weeks. The vertical jump performance was evaluated according to the maximum height of squat jump (SJ) and countermovement jump (CMJ). Single factor ANCOVA was used to examine the differences in each parameter between the groups after training with the pretest values as a covariate. The statistic significance was set at p < .05. After 8 weeks WBVT, the EG had significantly improved the maximal height of SJ (40.92 ± 2.96 cm vs. 48.40 ± 4.70 cm, F = 5.14, p < .05) and the maximal height CMJ (47.25 ± 7.48 cm vs. 52.20 ± 6.25 cm, F = 5.31, p < .05). 8 weeks of additional WBVT could improve the vertical and decuple jump performance in handball athletes. Enhanced motor unit synchronization and firing rates, facilitated muscular contraction stretch-shortening cycle, and improved lower extremity neuromuscular coordination could account for these enhancements.

Keywords: Muscle strength, explosive power, squat jump, and countermovement jump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
846 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

Authors: Rohitash Chandra, Christian W. Omlin

Abstract:

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
845 Impact of Moderating Role of e-Administration on Training, Perfromance Appraisal and Organizational Performance

Authors: Ejaz Ali, Muhammad Younas, Tahir Saeed

Abstract:

In this age of information technology, organizations are revisiting their approach in great deal. E-administration is the most popular area to proceed with. Organizations in order to excel over their competitors are spending a substantial chunk of its resources on E-Administration as it is the most effective, transparent and efficient way to achieve their short term as well as long term organizational goals. E-administration being a tool of ICT plays a significant role towards effective management of HR practices resulting into optimal performance of an organization. The present research was carried out to analyze the impact of moderating role of e-administration in the relationships training and performance appraisal aligned with perceived organizational performance. The study is based on RBV and AMO theories, advocating that use of latest technology in execution of human resource (HR) functions enables an organization to achieve and sustain competitive advantage which leads to optimal firm performance.

Keywords: Human resource management, HR function, e-administration, performance appraisal, training, organizational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
844 Application of Neural Network in User Authentication for Smart Home System

Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat

Abstract:

Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.

Keywords: Neural Network, User Authentication, Smart Home, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
843 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs

Authors: S. Chaisit, H.Y. Kung, N.T. Phuong

Abstract:

Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.

Keywords: BPNs, indoor location, location estimation, intelligent location identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
842 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge

Authors: Souad Demigha

Abstract:

The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.

Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
841 Resilient Manufacturing: Use of Augmented Reality to Advance Training and Operating Practices in Manual Assembly

Authors: L. C. Moreira, M. Kauffman

Abstract:

This paper outlines the results of an experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance (or work instructions) of highly customised and high-risk manual operations. The focus is on human operators’ training effectiveness and performance and the aim is to test if such technologies can support enhancing the knowledge retention levels and accuracy of task execution to improve health and safety (H&S). An AR enhanced assembly method is proposed and experimentally tested using a real industrial process as case study for electric vehicles’ (EV) battery module assembly. The experimental results revealed that the proposed method improved the training practices and performance through increases in the knowledge retention levels from 40% to 84%, and accuracy of task execution from 20% to 71%, when compared to the traditional paper-based method. The results of this research validate and demonstrate how emerging technologies are advancing the choice for manual, hybrid or fully automated processes by promoting the XR-assisted processes, and the connected worker (a vision for Industry 4 and 5.0), and supporting manufacturing become more resilient in times of constant market changes.

Keywords: Augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly 4.0, industry 5.0, smart training, battery assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 380
840 Corporate Information System Educational Center

Authors: Alquliyev R.M., Kazimov T.H., Mahmudova Sh.C., Mahmudova R.Sh.

Abstract:

The given work is devoted to the description of Information Technologies NAS of Azerbaijan created and successfully maintained in Institute. On the basis of the decision of board of the Supreme Certifying commission at the President of the Azerbaijan Republic and Presidium of National Academy of Sciences of the Azerbaijan Republic, the organization of training courses on Computer Sciences for all post-graduate students and dissertators of the republic, taking of examinations of candidate minima, it was on-line entrusted to Institute of Information Technologies of the National Academy of Sciences of Azerbaijan. Therefore, teaching the computer sciences to post-graduate students and dissertators a scientific - methodological manual on effective application of new information technologies for research works by post-graduate students and dissertators and taking of candidate minima is carried out in the Educational Center. Information and communication technologies offer new opportunities and prospects of their application for teaching and training. The new level of literacy demands creation of essentially new technology of obtaining of scientific knowledge. Methods of training and development, social and professional requirements, globalization of the communicative economic and political projects connected with construction of a new society, depends on a level of application of information and communication technologies in the educational process. Computer technologies develop ideas of programmed training, open completely new, not investigated technological ways of training connected to unique opportunities of modern computers and telecommunications. Computer technologies of training are processes of preparation and transfer of the information to the trainee by means of computer. Scientific and technical progress as well as global spread of the technologies created in the most developed countries of the world is the main proof of the leading role of education in XXI century. Information society needs individuals having modern knowledge. In practice, all technologies, using special technical information means (computer, audio, video) are called information technologies of education.

Keywords: Educational Center, post-graduate, database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
839 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
838 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi

Abstract:

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
837 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
836 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
835 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: Body composition, diet, exercise, protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
834 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
833 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal

Abstract:

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.

Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364