Search results for: spatial optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2519

Search results for: spatial optimization

2399 Flexible Cities: A Multisided Spatial Application of Tracking Livability of Urban Environment

Authors: Maria Christofi, George Plastiras, Rafaella Elia, Vaggelis Tsiourtis, Theocharis Theocharides, Miltiadis Katsaros

Abstract:

The rapidly expanding urban areas of the world constitute a challenge of how we need to make the transition to "the next urbanization", which will be defined by new analytical tools and new sources of data. This paper is about the production of a spatial application, the ‘FUMapp’, where space and its initiative will be available literally, in meters, but also abstractly, at a sensed level. While existing spatial applications typically focus on illustrations of the urban infrastructure, the suggested application goes beyond the existing: It investigates how our environment's perception adapts to the alterations of the built environment through a dataset construction of biophysical measurements (eye-tracking, heart beating), and physical metrics (spatial characteristics, size of stimuli, rhythm of mobility). It explores the intersections between architecture, cognition, and computing where future design can be improved and identifies the flexibility and livability of the ‘available space’ of specific examined urban paths.

Keywords: Biophysical data, flexibility of urban, livability, next urbanization, spatial application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
2398 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2397 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure

Authors: Rimmy Yadav, Avtar Singh

Abstract:

Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.

Keywords: Ant colony optimization, link failure, prim’s algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
2396 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Authors: Younis R. Elhaddad

Abstract:

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3443
2395 Cognitive Virtual Exploration for Optimization Model Reduction

Authors: Livier Serna, Xavier Fischer, Fouad Bennis

Abstract:

In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.

Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
2394 Rational Structure of Panel with Curved Plywood Ribs

Authors: Janis Šliseris, Karlis Rocens

Abstract:

Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Keywords: Curved plywood ribs, genetic algorithm, rationalparameters of ribbed panel, structure optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
2393 Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools

Authors: Waqas Saleem, Fan Yuqing

Abstract:

A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.

Keywords: Structural optimization, Topology optimization, Shape optimization, Tail fin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
2392 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari

Abstract:

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2391 Engineering Optimization Using Two-Stage Differential Evolution

Authors: K. Y. Tseng, C. Y. Wu

Abstract:

This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.

Keywords: Differential evolution, truss structure optimization, optimal chiller loading, modified binary differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2390 Experimental Modal Analysis and Model Validation of Antenna Structures

Authors: B.R. Potgieter, G. Venter

Abstract:

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2389 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
2388 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: Economic dispatch, optimization, quadratic programming, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
2387 Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model

Authors: Hu Haibo, Zhao Hong

Abstract:

Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.

Keywords: Gaussian mixture model, real-time tracking, sequence image, gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
2386 Spatial Distribution and Risk Assessment of As, Hg, Co and Cr in Kaveh Industrial City, using Geostatistic and GIS

Authors: Abbas Hani

Abstract:

The concentrations of As, Hg, Co, Cr and Cd were tested for each soil sample, and their spatial patterns were analyzed by the semivariogram approach of geostatistics and geographical information system technology. Multivariate statistic approaches (principal component analysis and cluster analysis) were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that primary inputs of As, Hg and Cd were due to anthropogenic while, Co, and Cr were associated with pedogenic factors. Ordinary kriging was carried out to map the spatial patters of heavy metals. The high pollution sources evaluated was related with usage of urban and industrial wastewater. The results of this study helpful for risk assessment of environmental pollution for decision making for industrial adjustment and remedy soil pollution.

Keywords: Geographic Information system, Geostatistics, Kaveh, Multivariate Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2385 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: S. Barbosa, M. Pinto, J. A. Almeida, E. Carvalho, C. Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioral profiles and generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
2384 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
2383 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
2382 Improved Hill Climbing and Simulated Annealing Algorithms for Size Optimization of Trusses

Authors: Morteza Kazemi Torbaghan, Seyed Mehran Kazemi, Rahele Zhiani, Fakhriye Hamed

Abstract:

Truss optimization problem has been vastly studied during the past 30 years and many different methods have been proposed for this problem. Even though most of these methods assume that the design variables are continuously valued, in reality, the design variables of optimization problems such as cross-sectional areas are discretely valued. In this paper, an improved hill climbing and an improved simulated annealing algorithm have been proposed to solve the truss optimization problem with discrete values for crosssectional areas. Obtained results have been compared to other methods in the literature and the comparison represents that the proposed methods can be used more efficiently than other proposed methods

Keywords: Size Optimization of Trusses, Hill Climbing, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3717
2381 Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

Authors: Hastuti Saptorini

Abstract:

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

Keywords: occupants' behavior, socio-economic-cultural activities, spatial implication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
2380 A Simple Adaptive Algorithm for Norm-Constrained Optimization

Authors: Hyun-Chool Shin

Abstract:

In this paper we propose a simple adaptive algorithm iteratively solving the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates scalar normalization which is computationally much simpler. The analysis of stationary point is presented to show that the proposed algorithm indeed solves the constrained optimization problem. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

Keywords: constrained optimization, unit-norm, LMS, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
2379 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization

Authors: Mohammad Taha, Dia abu al Nadi

Abstract:

In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.

Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2378 Stock Portfolio Selection Using Chemical Reaction Optimization

Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li

Abstract:

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
2377 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
2376 Optimization of Passive Vibration Damping of Space Structures

Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel

Abstract:

The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.

Keywords: Damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
2375 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2374 An Intelligent Optimization Model for Multi-objective Order Allocation Planning

Authors: W. K. Wong, Z. X. Guo, P.Y. Mok

Abstract:

This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are conducted to validate the proposed model. Results show that (1) the proposed model can effectively solve the investigated problem by providing effective production decision-making solutions, which outperformsan NSGA-II-based optimization process and an industrial method.

Keywords: Multi-objective order allocation planning, Pareto optimization, Memetic algorithm, Mento Carlo simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
2373 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747
2372 Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques

Authors: Jun-Oh Kim, Seol-Min Yang, Seok-Heum Baek, Sangmo Kang

Abstract:

In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. Computational Fluid Dynamics (CFD) analysis results demonstrate the validity of this approach.

Keywords: Double-eccentric butterfly valve, CFD, Topology optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543
2371 Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India

Authors: Amit Bhattacharyya

Abstract:

The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.

Keywords: Disparity, inter-block, social development, spatial variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
2370 Stability Optimization of Functionally Graded Pipes Conveying Fluid

Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed

Abstract:

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208