
 

 

  
Abstract—Truss optimization problem has been vastly studied 

during the past 30 years and many different methods have been 
proposed for this problem. Even though most of these methods 
assume that the design variables are continuously valued, in reality, 
the design variables of optimization problems such as cross-sectional 
areas are discretely valued. In this paper, an improved hill climbing 
and an improved simulated annealing algorithm have been proposed 
to solve the truss optimization problem with discrete values for cross-
sectional areas. Obtained results have been compared to other 
methods in the literature and the comparison represents that the 
proposed methods can be used more efficiently than other proposed 
methods. 

 
Keywords—Size Optimization of Trusses, Hill Climbing, 

Simulated Annealing. 

I. INTRODUCTION 
N recent years, many algorithms have been developed to                             
SSsolve the structural engineering optimization problem. 

These optimization techniques can be categorized into 
classical and heuristic search methods. Linear programming, 
non-linear programming and optimality criteria are examples 
of classical optimization methods [1]. Most of the proposed 
methods for structural optimization problem are based on the 
assumption that the design variables are continuously valued. 
In reality, however, the design variables such as cross-
sectional areas are discretely valued and they are chosen from 
a list of discrete variables [2]. 

In both continuous and discrete cases, different methods 
have been proposed to solve the problem. Evolutionary 
algorithms such as genetic algorithms have been mostly used 
in both cases. Rajeev and Krishnamoorthy in 1992 [3] and 
then Wu and Chow [4] in 1995 proposed a genetic algorithm 
approach for discrete optimization of trusses. Cheng [5] in 
2010 integrated the concepts of genetic algorithms and the 
finite element method to propose an efficient algorithm for 
optimal design of steel truss arch bridges. Other methods have 
been also used to solve the problem. Li et al. [6] in 2006 used 

 
Morteza Kazemi Torbaghan is with the Department of civil engineering, 

kashmar branch, Islamic Azad University, Kashmar, Iran (corresponding 
author Morteza Kazemi Torbaghan, phone: +989153054418; e-mail: 
Kazemi@iaukashmar.ac.ir).  

Seyed Mehran Kazemi is with the Computer Science Department, 
University of British Columbia (e-mail: smkazemi@cs.ubc.ca). 

Rahele Zhiani is with the Department of Chemistry, Neyshabur branch, 
Islamic Azad University, Neyshabur, Iran (e-mail: 
R_Zhiani2006@yahoo.com). 

Fakhriye Hamed is with the Department of civil engineering, kashmar 
branch, Islamic Azad University, kashmar, Iran.  
(e-mail: h.faxriye@gmail.com). 

a particle swarm optimization algorithm to solve the problem. 
Other stochastic search techniques based on natural 
phenomena were suggested by Saka [7] in 2007. Lamberty [8] 
in 2008 proposed an efficient simulated annealing method for 
design optimization of trusses. Assari et al. [9] in 2012 
presented an improved big bang – big crunch algorithm for 
size optimization of trusses. There are also lots of other 
methods applied to this optimization problem. 

In this paper, an improved hill climbing and also an 
improved simulated annealing algorithm have been proposed 
to solve the size optimization of trusses assuming discrete 
values for cross-sectional areas. The proposed algorithms use 
hill climbing and simulated annealing iteratively to find the 
optimum design for a given truss. 

The rest of this paper is organized as follows: in section II, 
the problem of size optimization for trusses has been 
formulated. Section III explains hill climbing algorithm. 
Section IV uses the explanation in section III to explain 
simulated annealing algorithm. In section V, the proposed 
algorithms to improve hill climbing and simulated annealing 
has been described. Section VI is related to experimental 
results. Finally, section VII shows the conclusion and 
summarizes the paper. 

II.  PROBLEM FORMULATION  
The optimization problem is the minimization of the weight 

of the structure subject to stress, displacement and minimum 
member size constrains. The objective function is: 

 

 
 
where ɣi is the material density of the member, Li is the length 
and Ai  is the cross-sectional area of the i-th bar. The problem 
is subject to tensile and compressive stress constraints, bounds 
on displacements, and side constraints on the areas, as follows: 
 
σmin  ≤   σi   ≤  σmax              i = 1, …, n 
δmin    ≤  δi  ≤  δmax              i = 1, …, m 
Ai  {Available areas}              i = 1, …, ng 

 
where n is the number of members making up the structure, m 
is the number of nodes, ng is the number of groups (number of 
design variables), σi and δi are the stress and nodal deflection, 
respectively, and Ai is the cross-sectional area [9]. 
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III. HILL CLIMBING  
Hill climbing is a mathematical optimization technique 

which belongs to the family of local search. It is an iterative 
algorithm that starts with an arbitrary solution to a problem, 
then attempts to find a better solution by incrementally 
changing a single element of the solution. If the change 
produces a better solution, an incremental change is made to 
the new solution, repeating until no further improvements can 
be found.  

Hill climbing is good for finding a local optimum (a 
solution that cannot be improved by considering a neighboring 
configuration) but it is not guaranteed to find the best possible 
solution (the global optimum) out of all possible solutions (the 
search space). The characteristic that only local optima are 
guaranteed can be cured by using restarts (repeated local 
search), or more complex schemes based on iterations, like 
iterated local search, on memory, like reactive search 
optimization and tabu search, on memory-less stochastic 
modifications, like simulated annealing. 

In order to give a mathematical description of this method, 
Hill climbing attempts to maximize (or minimize) a target 
function f(x), where x is a vector of continuous and/or discrete 
values. At each iteration, hill climbing will adjust a single 
element in x and determine whether the change improves the 
value of f(x). With hill climbing, any change that improves 
f(x) is accepted, and the process continues until no change can 
be found to improve the value of f(x). Then, x is said to be 
"locally optimal" [10]. 

IV. SIMULATED ANNEALING  
Simulated annealing (SA) is a generic probabilistic meta-

heuristic for the global optimization problem of locating a 
good approximation to the global optimum of a given function 
in a large search space. It is often used when the search space 
is discrete. For certain problems, simulated annealing may be 
more efficient than exhaustive enumeration  provided that the 
goal is merely to find an acceptably good solution in a fixed 
amount of time, rather than the best possible solution. 

By analogy with this physical process, each step of the SA 
algorithm attempts to replace the current solution by a random 
solution (chosen according to a candidate distribution, often 
constructed to sample from solutions near the current 
solution). The new solution may then be accepted with a 
probability that depends both on the difference between the 
corresponding function values and also on a global parameter 
T (called the temperature), that is gradually decreased during 
the process. The dependency is such that the choice between 
the previous and current solution is almost random when T is 
large, but increasingly selects the better or "downhill" solution 
(for a minimization problem) as T goes to zero. The allowance 
for "uphill" moves potentially saves the method from 
becoming stuck at local optima which are the bane of greedier 
methods [11]. 

V.  PROPOSED ALGORITHMS  
In order to solve the problem of size optimization for 

trusses, first of all a cost function has been implemented. In 
this function, the cost of a truss not having the desired 
conditions (stress and displacement conditions) is equal to 
infinity. For a truss having the desired conditions, the cost a 
solution is equal to the weight of the elements used.  

Two algorithms have been proposed in this paper. The first 
algorithm uses in iterative hill climbing method. In the first 
iteration of this algorithm, an initial random solution is 
generated and hill climbing algorithm is used to get to a local 
minimum. Then, in each iteration, an initial random solution is 
generated until the cost of the generated solution is lower than 
the cost achieved in the last iteration. Then hill climbing is 
used again to get to another minimum. This loop iterates until 
no initial random solution can be generated having a lower 
cost than the minimum cost achieved in the last iteration. 

The second proposed algorithm has just one difference in 
comparison with the first one. The difference is that simulated 
annealing is used instead of hill climbing to get to a minimum. 

Using the proposed algorithms, we have a better chance to 
end up in a global minimum and not in a local minimum. The 
reason is that if in the first iteration we end up in a local 
minimum, in the second iteration we begin from a point 
having a lower cost than the last minimum achieved. 
Therefore, we will find another minimum in this iteration 
which surely has a lower cost than the last minimum. 
Repeating this process, in each iteration, a minimum with a 
lower cost is found and this will lead to achieving the global 
minimum. 

VI. EXPERIMENTAL RESULTS  
In order to verify the proposed algorithms, we carried out 

the structural design optimization for two benchmarking 
design problems of 10-bar and 25-bar truss structures. 
Obtained results are compared to the solutions from other 
methods in the literature to demonstrate the efficiency of 
present approach. The algorithms were implemented and ran 
in an environment with the following characteristics: 

Programming language: MATLAB 2010 
CPU: Core 2 Duo 2.63GHz 
Memory: 4GB 
Operating System: Windows 7 

A. Weight Optimization of a 10 Bars Plane Truss 
The geometry of 10-bar plane truss structure is show in Fig. 

1. This optimization problem has been studied by many 
researchers, and solutions by many different optimization 
approaches are available in the literature. 

The objective function of the problem is to minimize the 
weight of the structure. The input data for this problem are 
Young's modulus, E = 6.895 × 104 MPa (104 Ksi), material 
density, ρ = 2767.990 Kg/m3 (0.1lb/in3) and vertical 
downward loads of 445.374 KN (100 Kips) at joints 2 and 4. 
The allowable displacement is limited to 5.08 cm (2 in) in 
both x and y directions at all nodes, and the allowable stress = 
± 172.375 MPa (25 Ksi) for all members.  
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TABLE IV 
OBTAINED RESULTS FROM PRESENT WORK AND OTHER PROPOSED METHODS 

FOR 25 BARS SPACE TRUSS 

 
VII. CONCLUSION  

In this paper, an improved hill climbing and an improved 
simulated annealing algorithm were proposed to solve the size 
optimization problem for trusses. In order to verify the 
proposed algorithms, the structural design optimization was 
carried out for two benchmarking design problems of 10-bar 
and 25-bar truss structures. Obtained results represented that 
the proposed algorithms can be used more efficiently than 
some other well-known methods in the literature. The results 
also demonstrated that improved simulated annealing is more 
efficient than the improved hill climbing algorithm. 

In future, we can use local beam search instead of hill 
climbing and simulated annealing to enhance the performance 
of the algorithm for this problem. 
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Method 
proposed 

hill 
climbing 

proposed 
simulated 
annealing 

Rajeev and 
Krishnamoorthy[3] 

Jang et 
al.[12] 

Optimum 
weight(Kg) 236.95 223.97 247.67 247.91 

X1 0.645 0.645 0.645 14.19 
X2 10.965 1.29 11.61 1.29 
X3 19.35 21.93 14.835 21.94 
X4 0.645 0.645 1.29 9.68 
X5 7.095 10.32 0.645 4.52 
X6 7.095 5.805 5.16 4.52 
X7 3.225 5.805 11.61 9.68 
X8 20.64 21.93 19.53 19.53 
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