Search results for: regression models.
2965 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9172964 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi
Abstract:
The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.
Keywords: Mixed Matrix Membrane, Permeation Models, Porous particles, Porosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26342963 Estimation Model of Dry Docking Duration Using Data Mining
Authors: Isti Surjandari, Riara Novita
Abstract:
Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.
Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24332962 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood-based estimating methodology. The joint generalized quasi-likelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill-conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQL-III) that is based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.
Keywords: Longitudinal, Com-Poisson, Ill-conditioned, INAR(1), GLMS, GQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17762961 A Study on Exclusive Breastfeeding using Over-dispersed Statistical Models
Authors: Naushad Mamode Khan, Cheika Jahangeer, Maleika Heenaye-Mamode Khan
Abstract:
Breastfeeding is an important concept in the maternal life of a woman. In this paper, we focus on exclusive breastfeeding. Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. This type of breastfeeding is very important during the first six months because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in Mauritius, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we give an overview of exclusive breastfeeding in Mauritius and the factors influencing it. We further analyze the local practices of exclusive breastfeeding using the Generalized Poisson regression model and the negative-binomial model since the data are over-dispersed.
Keywords: Exclusive breast feeding, regression model, generalized poisson, negative binomial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16012960 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23372959 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842958 MMU Simulation in Hardware Simulator Based-on State Transition Models
Authors: Zhang Xiuping, Yang Guowu, Zheng Desheng
Abstract:
Embedded hardware simulator is a valuable computeraided tool for embedded application development. This paper focuses on the ARM926EJ-S MMU, builds state transition models and formally verifies critical properties for the models. The state transition models include loading instruction model, reading data model, and writing data model. The properties of the models are described by CTL specification language, and they are verified in VIS. The results obtained in VIS demonstrate that the critical properties of MMU are satisfied in the state transition models. The correct models can be used to implement the MMU component in our simulator. In the end of this paper, the experimental results show that the MMU can successfully accomplish memory access requests from CPU.Keywords: MMU, State transition, Model, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172957 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly & Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly & Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicate the improvement in the performance of SVM (Poly & Rbf) in comparison to dimensional form of scour.Keywords: Modeling, pier scour, regression, prediction, SVM (Poly & Rbf kernels).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15452956 Neuro-Hybrid Models for Automotive System Identification
Authors: Ventura Assuncao
Abstract:
In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702955 A Method to Saturation Modeling of Synchronous Machines in d-q Axes
Authors: Mohamed A. Khlifi, Badr M. Alshammari
Abstract:
This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.Keywords: Cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22492954 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302953 An ensemble of Weighted Support Vector Machines for Ordinal Regression
Authors: Willem Waegeman, Luc Boullart
Abstract:
Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.Keywords: Ordinal regression, support vector machines, ensemblelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16442952 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.
Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8692951 Economic Dispatch Fuzzy Linear Regression and Optimization
Authors: A. K. Al-Othman
Abstract:
This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22932950 Regional Analysis of Streamflow Drought: A Case Study for Southwestern Iran
Authors: M. Byzedi, B. Saghafian
Abstract:
Droughts are complex, natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts, such as meteorological, agricultural, hydrological, and socioeconomical are distinguished. Streamflow drought was analyzed by the method of truncation level (at 70% level) on daily discharges measured in 54 hydrometric stations in southwestern Iran. Frequency analysis was carried out for annual maximum series (AMS) of drought deficit volume and duration series. Some factors including physiographic, climatic, geologic, and vegetation cover were studied as influential factors in the regional analysis. According to the results of factor analysis, six most effective factors were identified as area, rainfall from December to February, the percent of area with Normalized Difference Vegetation Index (NDVI) <0.1, the percent of convex area, drainage density and the minimum of watershed elevation that explained 90.9% of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. Suitable multivariate regression models were evaluated for streamflow drought deficit volume with 2 years return period. The significance level of regression models was 0.01. The results showed that the watershed area is the most effective factor with high correlation with deficit volume. Also, drought duration was not a suitable drought index for regional analysis.Keywords: Iran, Streamflow drought, truncation level method, regional analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442949 Fuzzy Cost Support Vector Regression
Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati
Abstract:
In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.
Keywords: Support vector regression, Fuzzy input, Fuzzy cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13722948 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31152947 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets
Authors: Sotirios Raptis
Abstract:
Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.
Keywords: Probability, cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4632946 The Risk Factors Associated with Under-Five Mortality in Lesotho Using the 2009 Lesotho Demographic and Health Survey
Authors: T. Motsima
Abstract:
The under-5 mortality rate is high in sub-Saharan Africa with Lesotho being amongst the highest under-5 mortality rates in the world. The objective of the study is to determine the factors associated with under-5 mortality in Lesotho. The data used for this analysis come from the nationally representative household survey called the 2009 Lesotho Demographic and Health Survey. Odds ratios produced by the logistic regression models were used to measure the effect of each independent variable on the dependent variable. Female children were significantly 38% less likely to die than male children. Children who were breastfed for 13 to 18 months and those who were breastfed for more than 19 months were significantly less likely to die than those who were breastfed for 12 months or less. Furthermore, children of mothers who stayed in Quthing, Qacha’s Nek and Thaba Tseka ran the greatest risk of dying. The results suggested that: sex of child, type of birth, breastfeeding duration, district, source of energy and marital status were significant predictors of under-5 mortality, after correcting for all variables.
Keywords: Under-5 mortality, risk factors, millennium development goals, breastfeeding, logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14802945 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.
Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242944 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.
Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6252943 A Study on Inference from Distance Variables in Hedonic Regression
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban area, several landmarks may affect housing price and rents, and hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.
Keywords: Landmarks, hedonic regression, distance variables, collinearity, multicollinerity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042942 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.
Keywords: Daily probability model, monsoon seasons, regions, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16322941 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37382940 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: Power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12102939 Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum
Authors: K. S. Chia, H. Abdul Rahim, R. Abdul Rahim
Abstract:
The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.Keywords: Pineapple, Shortwave near infrared, Principal component regression, Non-invasive measurement; Soluble solids content
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20272938 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.
Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22162937 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17772936 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461