The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models

Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi

Abstract:

The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.

Keywords: Mixed Matrix Membrane, Permeation Models, Porous particles, Porosity.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1098956

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639

References:


[1] H.Vinh-Thang, S.Kaliaguine “Predictive Models for Mixed-Matrix Membrane Performance: A Review”, ACS Publications J., vol.113 (7), 2012, pp. 4980–5028.
[2] S.A.Hashemifard, A.F.Ismail, T.Matsuura, “A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems”, Membr. Sci.J., vol.350, 2010,pp. 259–268.
[3] B.Shimekit, H.Mukhtar, T.Murugesan, “Prediction of the relative permeability of gases in mixed matrix membranes”, Membr. Sci.J.,vol.373, 2011, pp 152–159.
[4] K.M.Gheimasi, T.Mohammadi, O.Bakhtiari, “Modification of ideal MMMs permeation prediction models: Effects of partial pore blockage and polymer chain regidification”, Membr. Sci.J., vol.427, 2013,pp 399– 410.
[5] E.E.Gonzo, M.L.Parentis, J.C.Gohifredi, “Estimating models for predicting effective permeability of mixed matrix membranes”, Membr. Sci.J.,vol. 277,2006,pp 46–54.
[6] T.S.Chung, L.Y.Jiang, S.Kulprathipanja,”Mixed matrix membranes (MMMs) comprising organic polymers with dispersed in organic fillers for gas separation”, Prog.Polym.Sci. J.,vol.32, 2007, pp. 483-507.
[7] Z.Y.Yeo, T.L.Chew, P.W.Zhu, A.R.Mohamed,S.P.Chai,” Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review”, Natural Gas Chemistry J. ,vol.21, 2012, pp.282– 298.
[8] J.H.Petropoulos,” A comparative study of approaches applied to the permeability of binary composite polymeric materials”, Polym. Sci.Polym. Phys. J., Ed. 23,1985,pp. 1309–1324.
[9] H.B.TanhJeazet, C.Staudt, C.Janiak,” Metal–organic frameworks in mixed-matrix membranes for gas separation”, Dalton Trans.J,vol.41, 2012, pp. 14003–14027.
[10] D.A.G.Bruggeman, Ann.phys. (Leipzig).vol.24,1935,pp.636.
[11] C.J.F.Bottcher, “The dielectric constant of crystalline powders”, Recueil desTravauxChimiques des Pay-Bas (Leipzig),vol.64, 1945, pp.47-51.
[12] N.Mansouri, N.Rikhtegar, H.A.Panahi, F.Atabaki, B.Karimishahraki, “Porosity, characterization and structural properties of natural zeolite– clinoptilolite – as a sorbent”, Environment Protection EngineeringJ., vol. 39, No. 1, 2013, pp.139-153.
[13] A.Bushell,“Mixed Matrix Membranes of a Polymer of Intrinsic Micro porosity with Crystalline Porous Solids”, A thesis submitted to the University of Manchester, 2012.
[14] R.Pal,” Permeation models for mixed matrix membranes”, Colloid and Interface Science J., vol. 317, 2008, pp.191–198.
[15] M.A.Aroon,A.F.Ismail, T.Matsuura, M.M.Montazer- Rahmati,”Performance studies of mixed matrix membranes for gas separation: a review”, Sep. Purif. Technol.J., vol.75, 2010,pp.229–242.
[16] A.Shariati, M.R.Omidkhah, M.Zamani, “New permeation models for nan ocomposite polymeric membranes filled with nonporous particles”, Chem.Eng.Research and Design J., vol.90, 2012, pp.563-575.
[17] W.I.Higuchi, T.Higuchi, “Theoretical analysis of diffusion at movement through heterogeneous barriers”,Amer. Pharm. Assoc., Sci. J.,vol.49, 1960, pp.598-606.
[18] L.E.Nielsen, “Thermal conductivity of particulate-filled polymers”, Appl.Polym.Sci. J., vol.17, 1973, pp. 3819.
[19] E.E.Gonzo,“Estimating correlations for the effective thermal conductivity of granular materials”, Membr. Sci.J., vol.427, 2002,pp.399–410.
[20] Y.C.Chiew,E. D.Glandt,”The effect of structure on the conductivity of a dispersion”, Colloid and Interface science J., vol.94,No.1,1983,pp. 90- 104.
[21] J.D.Felske, “Effective thermal conductivity of composite spheres in a continuous medium with contact resistance”, Heat and Mass Transfer J., vol.47, 2004, pp.3453-3461.
[22] M.Mohammadi, G.D.Najafpour, M.AbdulRahman,”Production of Carbon Molecular Sieves from Palm shell through carbon deposition from methane”, Chemical Industry &Chemical Engineering Quarterly J.,vol.17 (4), 2011,pp.525-533.
[23] D.Q.Vu, W.J.Koros, S.J.Miller, “Mixed matrix membranes using carbon molecular sievesII.Modelingpermeation behavior”, Membr. Sci.J., vol.211, 2003, pp.335-348.
[24] F.Dorosti,M.OmidKhah, R.Abedini,”Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation”Chem.Eng.Research and Design J., to be published