Search results for: inverse flow
2399 Conducting Flow Measurement Laboratory Test Work
Authors: M. B. Kime
Abstract:
Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.
Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49422398 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow
Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof
Abstract:
A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study.It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing aregion with higher total temperature,compared to the distant region,peripheral to the vortex core.
Keywords: Energy separation mechanism, theoretical analysis, vortex tube, vortical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032397 Load Flow Analysis: An Overview
Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose
Abstract:
The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.
Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68572396 Simulation of Internal Flow Field of Pitot-Tube Jet Pump
Authors: Iqra Noor, Ihtzaz Qamar
Abstract:
Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.
Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7542395 Numerical Study of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29992394 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop
Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy
Abstract:
In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36972393 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem
Authors: Ahmad Rabanimotlagh
Abstract:
In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24212392 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel
Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun
Abstract:
The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.
Keywords: Experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10242391 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.
Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15022390 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202389 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows
Authors: F. A. Hamad, S. He
Abstract:
In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812388 Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods
Authors: Xian Ming Gu, Ting Zhu Huang, Hou Biao Li
Abstract:
In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these preconditioners are presented and how to construct preconditioners effectively for any nonsingular block pentadiagonal H-matrices is also described. In addition, the availability of these preconditioners is illustrated with some numerical experiments arising from two dimensional biharmonic equation.
Keywords: Parallel algorithm, Pentadiagonal matrix, Polynomial approximate inverse, Preconditioners, Stair matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22392387 A Reliable FPGA-based Real-time Optical-flow Estimation
Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad
Abstract:
Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.Keywords: Optical flow, motion detection, real-time systems, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442386 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot
Authors: S. Parasuraman, Ler Shiaw Pei
Abstract:
In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.
Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20112385 Influence of Vortex Generator on Flow Behavior of Air Stream
Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan
Abstract:
This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.
Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22252384 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow
Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius
Abstract:
The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22022383 Open Channel Flow Measurement of Water by Using Width Contraction
Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan
Abstract:
Present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1 and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.Keywords: Flowrate, flowmeter, open channels, submergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23212382 On Method of Fundamental Solution for Nondestructive Testing
Abstract:
Nondestructive testing in engineering is an inverse Cauchy problem for Laplace equation. In this paper the problem of nondestructive testing is expressed by a Laplace-s equation with third-kind boundary conditions. In order to find unknown values on the boundary, the method of fundamental solution is introduced and realized. Because of the ill-posedness of studied problems, the TSVD regularization technique in combination with L-curve criteria and Generalized Cross Validation criteria is employed. Numerical results are shown that the TSVD method combined with L-curve criteria is more efficient than the TSVD method combined with GCV criteria. The abstract goes here.Keywords: ill-posed, TSVD, Laplace's equation, inverse problem, L-curve, Generalized Cross Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14742381 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25222380 Reductive Control in the Management of Redundant Actuation
Authors: Mkhinini Maher, Knani Jilani
Abstract:
We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented.
The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a « geometric ›› distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement.
Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.
Keywords: Mobile robot, actuation, redundancy, omnidirectional, inverse pseudo Moore-Penrose, reductive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792379 Threshold Submergence of Flow over PK Weirs
Authors: A. Javaheri, A. R. Kabiri-Samani
Abstract:
In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21832378 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.
Keywords: Corrugated absorber, double flow, exergy efficiency, solar air heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9382377 A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME
Authors: Sadegh Papari, Mohammad Kazemeini, Moslem Fattahi
Abstract:
In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one.Keywords: Modelling, Slurry bubble column, Dimethyl ether synthesis, Homogeneous gas flow, Heterogeneous gas flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21692376 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component
Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo
Abstract:
Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.
Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392375 A Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis
Authors: Hadi Sadoghi Yazdi, Mehri Sadoghi Yazdi, Mohammad Reza Mohammadi
Abstract:
This paper is concerned with studying the forgetting factor of the recursive least square (RLS). A new dynamic forgetting factor (DFF) for RLS algorithm is presented. The proposed DFF-RLS is compared to other methods. Better performance at convergence and tracking of noisy chirp sinusoid is achieved. The control of the forgetting factor at DFF-RLS is based on the gradient of inverse correlation matrix. Compared with the gradient of mean square error algorithm, the proposed approach provides faster tracking and smaller mean square error. In low signal-to-noise ratios, the performance of the proposed method is superior to other approaches.
Keywords: Forgetting factor, RLS, Inverse correlation matrix, human motion analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22472374 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application
Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini
Abstract:
A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18032373 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile
Authors: V. Ghadamyari, F. Samadi, F. Kowsary
Abstract:
An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342372 Slugging Frequency Correlation for Inclined Gas-liquid Flow
Authors: V. Hernandez-Perez, M. Abdulkadir, B. J. Azzopardi
Abstract:
In this work, new experimental data for slugging frequency in inclined gas-liquid flow are reported, and a new correlation is proposed. Scale experiments were carried out using a mixture of air and water in a 6 m long pipe. Two different pipe diameters were used, namely, 38 and 67 mm. The data were taken with capacitance type sensors at a data acquisition frequency of 200 Hz over an interval of 60 seconds. For the range of flow conditions studied, the liquid superficial velocity is observed to influence the frequency strongly. A comparison of the present data with correlations available in the literature reveals a lack of agreement. A new correlation for slug frequency has been proposed for the inclined flow, which represents the main contribution of this work.Keywords: slug frequency, inclined flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31632371 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations
Authors: Yiqin Lin, Liang Bao, Yimin Wei
Abstract:
In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.
Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19962370 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness
Authors: M. Hakak Khadem, M. Shams, S. Hossainpour
Abstract:
A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.Keywords: Relative roughness, slip flow, Poiseuille number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418