Search results for: fuzzy system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8900

Search results for: fuzzy system

8780 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
8779 k-Fuzzy Ideals of Ternary Semirings

Authors: Sathinee Malee, Ronnason Chinram

Abstract:

The notion of k-fuzzy ideals of semirings was introduced by Kim and Park in 1996. In 2003, Dutta and Kar introduced a notion of ternary semirings. This structure is a generalization of ternary rings and semirings. The main purpose of this paper is to introduce and study k-fuzzy ideals in ternary semirings analogous to k-fuzzy ideals in semirings considered by Kim and Park.

Keywords: k-ideals, k-fuzzy ideals, fuzzy k-ideals, ternarysemirings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
8778 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic

Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei

Abstract:

An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.

Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
8777 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

Authors: Vassilis S. Kodogiannis, John N. Lygouras

Abstract:

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
8776 Applications of Trigonometic Measures of Fuzzy Entropy to Geometry

Authors: Om Parkash, C.P.Gandhi

Abstract:

In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.

Keywords: Entropy, Uncertainty, Fuzzy Entropy, Concavity, Symmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
8775 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
8774 Classification and Resolving Urban Problems by Means of Fuzzy Approach

Authors: F. Habib, A. Shokoohi

Abstract:

Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.

Keywords: Classification, complexity, Fuzzy theory, urban problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
8773 Seismic Response Reduction of Structures using Smart Base Isolation System

Authors: H.S. Kim

Abstract:

In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

Keywords: Fuzzy logic controller, genetic algorithm, MR damper, smart base isolation system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
8772 Trajectory Control of a Robotic Manipulator Utilizing an Adaptive Fuzzy Sliding Mode

Authors: T. C. Kuo

Abstract:

In this paper, a novel adaptive fuzzy sliding mode control method is proposed for the robust tracking control of robotic manipulators. The proposed controller possesses the advantages of adaptive control, fuzzy control, and sliding mode control. First, system stability and robustness are guaranteed based on the sliding mode control. Further, fuzzy rules are developed incorporating with adaptation law to alleviate the input chattering effectively. Stability of the control system is proven by using the Lyapunov method. An application to a three-degree-of-freedom robotic manipulator is carried out. Accurate trajectory tracking as well as robustness is achieved. Input chattering is greatly eliminated.

Keywords: Fuzzy control, sliding mode control, roboticmanipulator, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
8771 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: Load Frequency Control, Fuzzy-PID controller, Type 2 fuzzy system, Harmony Search algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
8770 Using Fuzzy Numbers in Heavy Aggregation Operators

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We consider different types of aggregation operators such as the heavy ordered weighted averaging (HOWA) operator and the fuzzy ordered weighted averaging (FOWA) operator. We introduce a new extension of the OWA operator called the fuzzy heavy ordered weighted averaging (FHOWA) operator. The main characteristic of this aggregation operator is that it deals with uncertain information represented in the form of fuzzy numbers (FN) in the HOWA operator. We develop the basic concepts of this operator and study some of its properties. We also develop a wide range of families of FHOWA operators such as the fuzzy push up allocation, the fuzzy push down allocation, the fuzzy median allocation and the fuzzy uniform allocation.

Keywords: Aggregation operators, Fuzzy numbers, Fuzzy OWAoperator, Heavy OWA operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
8769 Control of a DC Servomotor Using Fuzzy Logic Sliding Mode Model Following Controller

Authors: Phongsak Phakamach

Abstract:

A DC servomotor position control system using a Fuzzy Logic Sliding mode Model Following Control or FLSMFC approach is presented. The FLSMFC structure consists of an integrator and variable structure system. The integral control is introduced into it in order to eliminated steady state error due to step and ramp command inputs and improve control precision, while the fuzzy control would maintain the insensitivity to parameter variation and disturbances. The FLSMFC strategy is implemented and applied to a position control of a DC servomotor drives. Experimental results indicated that FLSMFC system performance with respect to the sensitivity to parameter variations is greatly reduced. Also, excellent control effects and avoids the chattering phenomenon.

Keywords: Sliding mode model following control, fuzzy logic, DC servomotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
8768 Fuzzy Control of a Quarter-Car Suspension System

Authors: M. M. M. Salem, Ayman A. Aly

Abstract:

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4205
8767 LabVIEW with Fuzzy Logic Controller Simulation Panel for Condition Monitoring of Oil and Dry Type Transformer

Authors: N. A. Muhamad, S.A.M. Ali

Abstract:

Condition monitoring of electrical power equipment has attracted considerable attention for many years. The aim of this paper is to use Labview with Fuzzy Logic controller to build a simulation system to diagnose transformer faults and monitor its condition. The front panel of the system was designed using LabVIEW to enable computer to act as customer-designed instrument. The dissolved gas-in-oil analysis (DGA) method was used as technique for oil type transformer diagnosis; meanwhile terminal voltages and currents analysis method was used for dry type transformer. Fuzzy Logic was used as expert system that assesses all information keyed in at the front panel to diagnose and predict the condition of the transformer. The outcome of the Fuzzy Logic interpretation will be displayed at front panel of LabVIEW to show the user the conditions of the transformer at any time.

Keywords: LabVIEW, Fuzzy Logic, condition monitoring, oiltransformer, dry transformer, DGA, terminal values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
8766 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
8765 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
8764 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
8763 Predictive Fuzzy Logic Controller for Agile Micro-Satellite

Authors: A. Bellar, M.K. Fellah, A.M. Si Mohammed, M. Bensaada, L. Boukhris

Abstract:

This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.

Keywords: Agile micro-satellite, Attitude control, fuzzy logic, predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
8762 A Group Based Fuzzy MCDM for Selecting Knowledge Portal System

Authors: Amir Sanayei, Seyed Farid Mousavi, Catherine Asadi Shahmirzadi

Abstract:

Despite of many scholars and practitioners recognize the knowledge management implementation in an organizations but insufficient attention has been paid by researchers to select suitable knowledge portal system (KPS) selection. This study develops a Multi Criteria Decision making model based on the fuzzy VIKOR approach to help organizations in selecting KPS. The suitable portal is the critical influential factors on the success of knowledge management (KM) implementation in an organization.

Keywords: Knowledge management, Knowledge portal system, Fuzzy VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
8761 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
8760 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration

Authors: Binu Thomas, Raju G., Sonam Wangmo

Abstract:

In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.

Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
8759 S-Fuzzy Left h-Ideal of Hemirings

Authors: D.R Prince Williams

Abstract:

The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.

Keywords: hemiring, left h-ideal, anti fuzzy h-ideal, S-fuzzy left hideal, t-conorm , homomorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
8758 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E.Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
8757 TS Fuzzy Controller to Stochastic Systems

Authors: Joabe Silva, Ginalber Serra

Abstract:

This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.

Keywords: Fuzzy Systems; Robust Stability, Stochastic Control, Stochastic Process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
8756 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
8755 A Comparison of Fuzzy Clustering Algorithms to Cluster Web Messages

Authors: Sara El Manar El Bouanani, Ismail Kassou

Abstract:

Our objective in this paper is to propose an approach capable of clustering web messages. The clustering is carried out by assigning, with a certain probability, texts written by the same web user to the same cluster based on Stylometric features and using fuzzy clustering algorithms. Focus in the present work is on comparing the most popular algorithms in fuzzy clustering theory namely, Fuzzy C-means, Possibilistic C-means and Fuzzy Possibilistic C-Means.

Keywords: Authorship detection, fuzzy clustering, profiling, stylometric features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
8754 Fuzzy Logic Based Coordinated Voltage Control for Distribution Network with Distributed Generations

Authors: T. Juhana Hashim, A. Mohamed

Abstract:

This paper discusses the implementation of a fuzzy logic based coordinated voltage control for a distribution system connected with distributed generations (DGs). The connection of DGs has created a challenge for the distribution network operators to keep the voltage in the system within its acceptable limits. Intelligent centralized or coordinated voltage control schemes have proven to be more reliable due to its ability to provide more control and coordination with the communication with other network devices. In this work, voltage control using fuzzy logic by coordinating three methods of control, power factor control, on load tap changer and generation curtailment is implemented on a distribution network test system. The results show that the fuzzy logic based coordination is able to keep the voltage within its allowable limits. 

Keywords: Coordinated control, Distributed generation, Fuzzy logic, Voltage control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
8753 Fuzzy Estimation of Parameters in Statistical Models

Authors: A. Falsafain, S. M. Taheri, M. Mashinchi

Abstract:

Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.

Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
8752 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
8751 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values

Authors: Hidehiko Okada

Abstract:

Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.

Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545