Search results for: document identification.
1081 Modulation Identification Algorithm for Adaptive Demodulator in Software Defined Radios Using Wavelet Transform
Authors: P. Prakasam, M. Madheswaran
Abstract:
A generalized Digital Modulation Identification algorithm for adaptive demodulator has been developed and presented in this paper. The algorithm developed is verified using wavelet Transform and histogram computation to identify QPSK and QAM with GMSK and M–ary FSK modulations. It has been found that the histogram peaks simplifies the procedure for identification. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB and 12 dB for GMSK and QPSK respectively. When SNR is above 5 dB the throughput of the proposed algorithm is more than 97.8%. The receiver operating characteristics (ROC) has been computed to measure the performance of the proposed algorithm and the analysis shows that the probability of detection (Pd) drops rapidly when SNR is 5 dB and probability of false alarm (Pf) is smaller than 0.3. The performance of the proposed algorithm has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.
Keywords: Bit Error rate, Receiver Operating Characteristics, Software Defined Radio, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251080 Blind Identification of MA Models Using Cumulants
Authors: Mohamed Boulouird, Moha M'Rabet Hassani
Abstract:
In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.
Keywords: Cumulants, Identification, MA models, Parameter estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14091079 Support Vector Machine for Persian Font Recognition
Abstract:
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefacesKeywords: Persian font recognition, support vector machine, gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101078 Content-based Retrieval of Medical Images
Authors: Lilac A. E. Al-Safadi
Abstract:
With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931077 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23751076 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
Authors: Mohamed Adnan Landolsi, Ali F. Almutairi
Abstract:
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.
Keywords: Ultra-wideband, propagation, line-of-sight, non-line-of-sight, identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12571075 Visual Cryptography by Random Grids with Identifiable Shares
Authors: Ran-Zan Wang, Yao-Ting Lee
Abstract:
This paper proposes a visual cryptography by random grids scheme with identifiable shares. The method encodes an image O in two shares that exhibits the following features: (1) each generated share has the same scale as O, (2) any share singly has noise-like appearance that reveals no secret information on O, (3) the secrets can be revealed by superimposing the two shares, (4) folding a share up can disclose some identification patterns, and (5) both of the secret information and the designated identification patterns are recognized by naked eye without any computation. The property to show up identification patterns on folded shares establishes a simple and friendly interface for users to manage the numerous shares created by VC schemes.Keywords: Image Encryption, Image Sharing, Secret Sharing, Visual Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17621074 An Approach to Concerns and Aspects Mining for Web Applications
Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini
Abstract:
Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.Keywords: Aspect Mining, Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131073 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10751072 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis
Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini
Abstract:
Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731071 Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications
Authors: Abduladheem A. Ali, Easa A. Abd
Abstract:
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.Keywords: Fuzzy network, genetic algorithm, robot control, online genetic control, parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591070 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931069 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System
Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough
Abstract:
In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.
Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17811068 Sparsity-Aware and Noise-Robust Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911067 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14221066 Evaluation of a Multi-Resolution Dyadic Wavelet Transform Method for usable Speech Detection
Authors: Wajdi Ghezaiel, Amel Ben Slimane Rahmouni, Ezzedine Ben Braiek
Abstract:
Many applications of speech communication and speaker identification suffer from the problem of co-channel speech. This paper deals with a multi-resolution dyadic wavelet transform method for usable segments of co-channel speech detection that could be processed by a speaker identification system. Evaluation of this method is performed on TIMIT database referring to the Target to Interferer Ratio measure. Co-channel speech is constructed by mixing all possible gender speakers. Results do not show much difference for different mixtures. For the overall mixtures 95.76% of usable speech is correctly detected with false alarms of 29.65%.Keywords: Co-channel speech, usable speech, multi-resolutionanalysis, speaker identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13661065 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731064 Fingerprint Identification Keyless Entry System
Authors: Chih-Neng Liang, Huang-Bin Huang, Bo-Chiuan Chen
Abstract:
Nowadays, keyless entry systems are widely adopted for vehicle immobilizer systems due to both advantages of security and convenience. Keyless entry systems could overcome brute-force key guessing attack, statistics attack and masquerade attack, however, they can't prevent from thieves stealing behavior. In this paper, we proposed a new architecture try to improve the existent flaws. The integration of the keyless entry system and the fingerprint identification technology is more suitable to implement on the portable transponder to achieve higher security needs. We also adopt and modify AES security protocol for life expectancy and security of the portable transponder. In addition, the identification of a driver's fingerprint makes the service of automatic reinstatement of a driver's preferences become possible. Our design can satisfy not only the three kinds of previous illegal attacks, but also the stealing situation. Furthermore, many practical factors, such as costs, life expectancy and performance, have been well considered in the design of portable transponder.Keywords: Keyless entry-system, fingerprint identification, AES security protocol, vehicle immobilizer system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27431063 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents
Authors: Azze-Eddine Maredj, Nourredine Tonkin
Abstract:
The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461062 Using Radio Frequency Identification Technology in Supply Chain Management
Authors: Eleonora Tudora, Adriana Alexandru
Abstract:
The radio frequency identification (RFID) is a technology for automatic identification of items, particularly in supply chain, but it is becoming increasingly important for industrial applications. Unlike barcode technology that detects the optical signals reflected from barcode labels, RFID uses radio waves to transmit the information from an RFID tag affixed to the physical object. In contrast to today most often use of this technology in warehouse inventory and supply chain, the focus of this paper is an overview of the structure of RFID systems used by RFID technology and it also presents a solution based on the application of RFID for brand authentication, traceability and tracking, by implementing a production management system and extending its use to traders.Keywords: RFID, RFID Tag, Electronic Product Code (EPC), EPC network, Object Naming Service (ONS), Authentication, Traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021061 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.
Keywords: Damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001060 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification
Authors: S. Kherchaoui, A. Houacine
Abstract:
This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.
Keywords: Facial expression identification, curvelet coefficients, support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421059 A Statistical Identification Approach by the Boundary Field Changes
Authors: Rumena D. Stancheva, Ilona I. Iatcheva
Abstract:
In working mode some unexpected changes could be arise in inner structure of electromagnetic device. They influence modification in electromagnetic field propagation map. The field values at an observed boundary are also changed. The development of the process has to be watched because the arising structural changes would provoke the device to be gone out later. The probabilistic assessment of the state is possible to be made. The numerical assessment points if the resulting changes have only accidental character or they are due to the essential inner structural disturbances. The presented application example is referring to the 200MW turbine-generator. A part of the stator core end teeth zone is simulated broken. Quasi three-dimensional electromagnetic and temperature field are solved applying FEM. The stator core state diagnosis is proposed to be solved as an identification problem on the basis of a statistical criterion.Keywords: Identification, structural disturbance, statistical criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12911058 Precision Identification of Nonlinear Damping Parameter for a Miniature Moving-Coil Transducer
Authors: Yu-Ting Tsai, Yu-da Lee, Jin H. Huang
Abstract:
The nonlinear damping behavior is usually ignored in the design of a miniature moving-coil loudspeaker. But when the loudspeaker operated in air, the damping parameter varies with the voice-coil displacement corresponding due to viscous air flow. The present paper presents an identification model as inverse problem to identify the nonlinear damping parameter in the lumped parameter model for the loudspeaker. Theoretical results for the nonlinear damping are verified by using laser displacement measurement scanner. These results indicate that the damping parameter has the greatly different nonlinearity between in air and vacuum. It is believed that the results of the present work can be applied in diagnosis and sound quality improvement of a miniature loudspeaker.
Keywords: Miniature loudspeaker, non-linear damping, system identification, Lumped parameter model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801057 Control Configuration System as a Key Element in Distributed Control System
Authors: Goodarz Sabetian, Sajjad Moshfe
Abstract:
Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.Keywords: Control, configuration, DCS, power plant, bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12151056 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: Internet ranking,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751055 Clustering Unstructured Text Documents Using Fading Function
Authors: Pallav Roxy, Durga Toshniwal
Abstract:
Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851054 Text Summarization for Oil and Gas News Article
Authors: L. H. Chong, Y. Y. Chen
Abstract:
Information is increasing in volumes; companies are overloaded with information that they may lose track in getting the intended information. It is a time consuming task to scan through each of the lengthy document. A shorter version of the document which contains only the gist information is more favourable for most information seekers. Therefore, in this paper, we implement a text summarization system to produce a summary that contains gist information of oil and gas news articles. The summarization is intended to provide important information for oil and gas companies to monitor their competitor-s behaviour in enhancing them in formulating business strategies. The system integrated statistical approach with three underlying concepts: keyword occurrences, title of the news article and location of the sentence. The generated summaries were compared with human generated summaries from an oil and gas company. Precision and recall ratio are used to evaluate the accuracy of the generated summary. Based on the experimental results, the system is able to produce an effective summary with the average recall value of 83% at the compression rate of 25%.
Keywords: Information retrieval, text summarization, statistical approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081053 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick S. Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.
Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5381052 Portable Virtual Piano Design
Authors: Yu-Xiang Zhao, Chien-Hsing Chou, Mu-Chun Su, Yi-Zeng Hsieh
Abstract:
The purpose of this study is to design a portable virtual piano. By utilizing optical fiber gloves and the virtual piano software designed by this study, the user can play the piano anywhere at any time. This virtual piano consists of three major parts: finger tapping identification, hand movement and positioning identification, and MIDI software sound effect simulation. To play the virtual piano, the user wears optical fiber gloves and simulates piano key tapping motions. The finger bending information detected by the optical fiber gloves can tell when piano key tapping motions are made. Images captured by a video camera are analyzed, hand locations and moving directions are positioned, and the corresponding scales are found. The system integrates finger tapping identification with information about hand placement in relation to corresponding piano key positions, and generates MIDI piano sound effects based on this data. This experiment shows that the proposed method achieves an accuracy rate of 95% for determining when a piano key is tapped.Keywords: virtual piano, portable, identification, optical fibergloves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746