Search results for: discrete wavelet
680 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform
Authors: Celso A. G. Santos, Paula K. M. M. Freire
Abstract:
The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.Keywords: rainfall data, urban center, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447679 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition
Authors: H K Lakshminarayana, J S Bhat, H M Mahesh
Abstract:
A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610678 T-Wave Detection Based on an Adjusted Wavelet Transform Modulus Maxima
Authors: Samar Krimi, Kaïs Ouni, Noureddine Ellouze
Abstract:
The method described in this paper deals with the problems of T-wave detection in an ECG. Determining the position of a T-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. A wavelet transform approach handles these complications therefore a method based on this concept was developed. In this way we developed a detection method that is able to detect T-waves with a sensitivity of 93% and a correct-detection ratio of 93% even with a serious amount of baseline drift and noise.Keywords: ECG, Modulus Maxima Wavelet Transform, Performance, T-wave detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852677 Kalman-s Shrinkage for Wavelet-Based Despeckling of SAR Images
Authors: Mario Mastriani, Alberto E. Giraldez
Abstract:
In this paper, a new probability density function (pdf) is proposed to model the statistics of wavelet coefficients, and a simple Kalman-s filter is derived from the new pdf using Bayesian estimation theory. Specifically, we decompose the speckled image into wavelet subbands, we apply the Kalman-s filter to the high subbands, and reconstruct a despeckled image from the modified detail coefficients. Experimental results demonstrate that our method compares favorably to several other despeckling methods on test synthetic aperture radar (SAR) images.Keywords: Kalman's filter, shrinkage, speckle, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605676 Digital Image Watermarking in the Wavelet Transform Domain
Authors: Kamran Hameed, Adeel Mumtaz, S.A.M. Gilani
Abstract:
In this paper, we start by first characterizing the most important and distinguishing features of wavelet-based watermarking schemes. We studied the overwhelming amount of algorithms proposed in the literature. Application scenario, copyright protection is considered and building on the experience that was gained, implemented two distinguishing watermarking schemes. Detailed comparison and obtained results are presented and discussed. We concluded that Joo-s [1] technique is more robust for standard noise attacks than Dote-s [2] technique.Keywords: Digital image, Copyright protection, Watermarking, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651675 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616674 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492673 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan Lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.
Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063672 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423671 Analysis of Chatter in Ball End Milling by Wavelet Transform
Authors: S. Tangjitsitcharoen
Abstract:
The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.
Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375670 Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients
Authors: Mbainaibeye Jérôme, Noureddine Ellouze
Abstract:
Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.
Keywords: Image compression, wavelet transform, sign coding, magnitude coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670669 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.
Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765668 Adaptive Digital Watermarking Integrating Fuzzy Inference HVS Perceptual Model
Authors: Sherin M. Youssef, Ahmed Abouelfarag, Noha M. Ghatwary
Abstract:
An adaptive Fuzzy Inference Perceptual model has been proposed for watermarking of digital images. The model depends on the human visual characteristics of image sub-regions in the frequency multi-resolution wavelet domain. In the proposed model, a multi-variable fuzzy based architecture has been designed to produce a perceptual membership degree for both candidate embedding sub-regions and strength watermark embedding factor. Different sizes of benchmark images with different sizes of watermarks have been applied on the model. Several experimental attacks have been applied such as JPEG compression, noises and rotation, to ensure the robustness of the scheme. In addition, the model has been compared with different watermarking schemes. The proposed model showed its robustness to attacks and at the same time achieved a high level of imperceptibility.Keywords: Watermarking, The human visual system (HVS), Fuzzy Inference System (FIS), Local Binary Pattern (LBP), Discrete Wavelet Transform (DWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818667 Wavelet Based Identification of Second Order Linear System
Authors: Sudipta Majumdar, Harish Parthasarathy
Abstract:
In this paper, a wavelet based method is proposed to identify the constant coefficients of a second order linear system and is compared with the least squares method. The proposed method shows improved accuracy of parameter estimation as compared to the least squares method. Additionally, it has the advantage of smaller data requirement and storage requirement as compared to the least squares method.Keywords: Least squares method, linear system, system identification, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574666 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058665 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149664 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis
Authors: S. P. Kozaitis, R. L. Kriner
Abstract:
The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876663 An Improved Algorithm of SPIHT based on the Human Visual Characteristics
Authors: Meng Wang, Qi-rui Han
Abstract:
Because of excellent properties, people has paid more attention to SPIHI algorithm, which is based on the traditional wavelet transformation theory, but it also has its shortcomings. Combined the progress in the present wavelet domain and the human's visual characteristics, we propose an improved algorithm based on human visual characteristics of SPIHT in the base of analysis of SPIHI algorithm. The experiment indicated that the coding speed and quality has been enhanced well compared to the original SPIHT algorithm, moreover improved the quality of the transmission cut off.Keywords: Lifted wavelet transform, SPIHT, Human Visual Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532662 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879661 Elimination Noise by Adaptive Wavelet Threshold
Authors: Iman Elyasi, Sadegh Zarmehi
Abstract:
Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.
Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472660 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617659 Fail-safe Modeling of Discrete Event Systems using Petri Nets
Authors: P. Nazemzadeh, A. Dideban, M. Zareiee
Abstract:
In this paper the effect of faults in the elements and parts of discrete event systems is investigated. In the occurrence of faults, some states of the system must be changed and some of them must be forbidden. For this goal, different states of these elements are examined and a model for fail-safe behavior of each state is introduced. Replacing new models of the target elements in the preliminary model by a systematic method, leads to a fail-safe discrete event system.Keywords: Discrete event systems, Fail-safe, Petri nets, Supervisory control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618658 Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator
Authors: Pei. P. Tan, Don. U.A. Galagedera, Elizabeth A.Maharaj
Abstract:
This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.Keywords: Asia-Pacific stock market, long-memory, return predictability, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731657 Comparative Study of QRS Complex Detection in ECG
Authors: Ibtihel Nouira, Asma Ben Abdallah, Ibtissem Kouaja, Mohamed Hèdi Bedoui
Abstract:
The processing of the electrocardiogram (ECG) signal consists essentially in the detection of the characteristic points of signal which are an important tool in the diagnosis of heart diseases. The most suitable are the detection of R waves. In this paper, we present various mathematical tools used for filtering ECG using digital filtering and Discreet Wavelet Transform (DWT) filtering. In addition, this paper will include two main R peak detection methods by applying a windowing process: The first method is based on calculations derived, the second is a time-frequency method based on Dyadic Wavelet Transform DyWT.Keywords: Derived calculation methods, Electrocardiogram, R peaks, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570656 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
Authors: Amir Moslemi, Amir Movafeghi, Shahab Moradi
Abstract:
One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).Keywords: Computed Tomography (CT), noise reduction, curve-let, contour-let, Signal to Noise Peak-Peak Ratio (PSNR), Structure Similarity (Ssim), Absorbed Dose to Patient (ADP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919655 Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability
Authors: Liping Li, Changchun Liu, Ke Li, Chengyu Liu
Abstract:
Non-stationary trend in R-R interval series is considered as a main factor that could highly influence the evaluation of spectral analysis. It is suggested to remove trends in order to obtain reliable results. In this study, three detrending methods, the smoothness prior approach, the wavelet and the empirical mode decomposition, were compared on artificial R-R interval series with four types of simulated trends. The Lomb-Scargle periodogram was used for spectral analysis of R-R interval series. Results indicated that the wavelet method showed a better overall performance than the other two methods, and more time-saving, too. Therefore it was selected for spectral analysis of real R-R interval series of thirty-seven healthy subjects. Significant decreases (19.94±5.87% in the low frequency band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the wavelet method is recommended as an optimal choice for use.Keywords: empirical mode decomposition, heart rate variability, signal detrending, smoothness priors, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068654 Frequency Estimation Using Analytic Signal via Wavelet Transform
Authors: Sudipta Majumdar, Akansha Singh
Abstract:
Frequency estimation of a sinusoid in white noise using maximum entropy power spectral estimation has been shown to be very sensitive to initial sinusoidal phase. This paper presents use of wavelet transform to find an analytic signal for frequency estimation using maximum entropy method (MEM) and compared the results with frequency estimation using analytic signal by Hilbert transform method and frequency estimation using real data together with MEM. The presented method shows the improved estimation precision and antinoise performance.Keywords: Frequency estimation, analytic signal, maximum entropy method, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737653 A Parallel Quadtree Approach for Image Compression using Wavelets
Authors: Hamed Vahdat Nejad, Hossein Deldari
Abstract:
Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.Keywords: Image compression, MPI, Parallel computing, Wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023652 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650651 Palmprint based Cancelable Biometric Authentication System
Authors: Ying-Han Pang, Andrew Teoh Beng Jin, David Ngo Chek Ling
Abstract:
A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.Keywords: Cancelable biometric authenticator, Discrete- Hashing, Moments, Palmprint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564