Search results for: curve feature
1202 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991201 Voice Command Recognition System Based on MFCC and VQ Algorithms
Authors: Mahdi Shaneh, Azizollah Taheri
Abstract:
The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.Keywords: MFCC, Vector quantization, Vocal tract, Voicecommand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31571200 Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama
Abstract:
An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25751199 Integrating Security Indifference Curve to Formal Decision Evaluation
Authors: Anon Yantarasri, Yachai Limpiyakorn
Abstract:
Decisions are regularly made during a project or daily life. Some decisions are critical and have a direct impact on project or human success. Formal evaluation is thus required, especially for crucial decisions, to arrive at the optimal solution among alternatives to address issues. According to microeconomic theory, all people-s decisions can be modeled as indifference curves. The proposed approach supports formal analysis and decision by constructing indifference curve model from the previous experts- decision criteria. These knowledge embedded in the system can be reused or help naïve users select alternative solution of the similar problem. Moreover, the method is flexible to cope with unlimited number of factors influencing the decision-making. The preliminary experimental results of the alternative selection are accurately matched with the expert-s decisions.Keywords: Decision Analysis and Resolution, Indifference Curve, Multi-criteria Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16201198 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801197 A Supervised Text-Independent Speaker Recognition Approach
Authors: Tudor Barbu
Abstract:
We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.
Keywords: Text-independent speaker recognition, mel cepstral analysis, speech feature vector, Hausdorff-based metric, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291196 Motion Recognition Based On Fuzzy WP Feature Extraction Approach
Authors: Keun-Chang Kwak
Abstract:
This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.
Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441195 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331194 Using Different Aspects of the Signings for Appearance-based Sign Language Recognition
Authors: Morteza Zahedi, Philippe Dreuw, Thomas Deselaers, Hermann Ney
Abstract:
Sign language is used by the deaf and hard of hearing people for communication. Automatic sign language recognition is a challenging research area since sign language often is the only way of communication for the deaf people. Sign language includes different components of visual actions made by the signer using the hands, the face, and the torso, to convey his/her meaning. To use different aspects of signs, we combine the different groups of features which have been extracted from the image frames recorded directly by a stationary camera. We combine the features in two levels by employing three techniques. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, or by concatenating feature groups over time and using LDA to choose the most discriminant elements. At the model level, a late fusion of differently trained models can be carried out by a log-linear model combination. In this paper, we investigate these three combination techniques in an automatic sign language recognition system and show that the recognition rate can be significantly improved.
Keywords: American sign language, appearance-based features, Feature combination, Sign language recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981193 Swarmed Discriminant Analysis for Multifunction Prosthesis Control
Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily
Abstract:
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15561192 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition
Authors: M. Hassan, I. Osman, M. Yahia
Abstract:
This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.
Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25711191 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121190 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests
Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan
Abstract:
This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.
Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8841189 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding
Authors: R. Krishnamoorthi, N. Kannan
Abstract:
In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.
Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21491188 Cryptography Over Elliptic Curve Of The Ring Fq[e], e4 = 0
Authors: Chillali Abdelhakim
Abstract:
Groups where the discrete logarithm problem (DLP) is believed to be intractable have proved to be inestimable building blocks for cryptographic applications. They are at the heart of numerous protocols such as key agreements, public-key cryptosystems, digital signatures, identification schemes, publicly verifiable secret sharings, hash functions and bit commitments. The search for new groups with intractable DLP is therefore of great importance.The goal of this article is to study elliptic curves over the ring Fq[], with Fq a finite field of order q and with the relation n = 0, n ≥ 3. The motivation for this work came from the observation that several practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic Curve Cryptosystems . In a first time, we describe these curves defined over a ring. Then, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. In anther article we study their cryptographic properties, an attack of the elliptic discrete logarithm problem, a new cryptosystem over these curves.
Keywords: Elliptic Curve Over Ring, Discrete Logarithm Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35831187 Wavelet Feature Selection Approach for Heart Murmur Classification
Authors: G. Venkata Hari Prasad, P. Rajesh Kumar
Abstract:
Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24731186 Optimized Calculation of Hourly Price Forward Curve (HPFC)
Authors: Ahmed Abdolkhalig
Abstract:
This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented.Keywords: Forward curve, furrier series, regression, radial basic function neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42281185 Automatic Feature Recognition for GPR Image Processing
Authors: Yi-an Cui, Lu Wang, Jian-ping Xiao
Abstract:
This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.Keywords: feature recognition, GPR image, matching strategy, salient image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22821184 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.
Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631183 Reliable Face Alignment Using Two-Stage AAM
Authors: Sunho Ki, Daehwan Kim, Seongwon Cho, Sun-Tae Chung, Jaemin Kim, Yun-Kwang Hong, Chang Joon Park, Dongmin Kwon, Minhee Kang, Yusung Kim, Younghan Yoon
Abstract:
AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.Keywords: AAM, Face Alignment, Feature Extraction, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771182 Progressive AAM Based Robust Face Alignment
Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim
Abstract:
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.Keywords: Face Alignment, AAM, facial feature detection, model matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391181 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7081180 Ottoman Script Recognition Using Hidden Markov Model
Authors: Ayşe Onat, Ferruh Yildiz, Mesut Gündüz
Abstract:
In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM).Keywords: Chain Code, HMM, Ottoman Script Recognition, OCR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23191179 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map
Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr
Abstract:
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.Keywords: Face detection, skin color segmentation, self-organizingmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25431178 The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings
Authors: Maryamossadat Bozorgtabar, Mohammadreza Rahimipour, Mehdi Salehi, Mohammadreza Jafarpour
Abstract:
Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.Keywords: APS, TiO2, Nanostructured Coating, Photoabsorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17151177 Wave Atom Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.
Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4921176 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach
Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari
Abstract:
This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28741175 Image Search by Features of Sorted Gray level Histogram Polynomial Curve
Authors: Awais Adnan, Muhammad Ali, Amir Hanif Dar
Abstract:
Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.
Keywords: Sorted Histogram, Polynomial Curves, feature pointsof images, Grayscale, visual properties of image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281174 Texture Feature Extraction using Slant-Hadamard Transform
Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi
Abstract:
Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26731173 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method
Authors: Mat Syai'in, Adi Soeprijanto
Abstract:
An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951