Search results for: analog algorithms.
1500 Influence of the Line Parameters in Transmission Line Fault Location
Authors: Marian Dragomir, Alin Dragomir
Abstract:
In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.
Keywords: Estimation algorithms, fault location, line parameters, simulation tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11541499 STRPRO Tool for Manipulation of Stratified Programs Based on SEPN
Authors: Chadlia Jerad, Amel Grissa-Touzi, Habib Ounelli
Abstract:
Negation is useful in the majority of the real world applications. However, its introduction leads to semantic and canonical problems. SEPN nets are well adapted extension of predicate nets for the definition and manipulation of stratified programs. This formalism is characterized by two main contributions. The first concerns the management of the whole class of stratified programs. The second contribution is related to usual operations optimization (maximal stratification, incremental updates ...). We propose, in this paper, useful algorithms for manipulating stratified programs using SEPN. These algorithms were implemented and validated with STRPRO tool.
Keywords: stratified programs, update operations, SEPN formalism, algorithms, STRPRO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12641498 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms
Authors: M. A. Rubio, A. Urquia
Abstract:
Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.Keywords: Optimization, sensitivity, genetic algorithms, model calibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14741497 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability
Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi
Abstract:
this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.Keywords: PSS, CHAOS, PSO, Stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16541496 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training
Authors: D. Uma Devi, P. Seetha Ramaiah
Abstract:
Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26551495 Robust UKF Insensitive to Measurement Faults for Pico Satellite Attitude Estimation
Authors: Halil Ersin Soken, Chingiz Hajiyev
Abstract:
In the normal operation conditions of a pico satellite, conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight and the estimations are corrected without affecting the characteristic of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.Keywords: attitude algorithms, Kalman filters, robustestimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231494 Techniques for Video Mosaicing
Authors: P.Saravanan, Narayanan .C.K., P.V.S.S Prakash, Prabhakara Rao .G.V
Abstract:
Video Mosaicing is the stitching of selected frames of a video by estimating the camera motion between the frames and thereby registering successive frames of the video to arrive at the mosaic. Different techniques have been proposed in the literature for video mosaicing. Despite of the large number of papers dealing with techniques to generate mosaic, only a few authors have investigated conditions under which these techniques generate good estimate of motion parameters. In this paper, these techniques are studied under different videos, and the reasons for failures are found. We propose algorithms with incorporation of outlier removal algorithms for better estimation of motion parameters.Keywords: Motion parameters, Outlier removal algorithms, Registering , and Video Mosaicing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12591493 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode
Authors: Jiri Sebesta
Abstract:
Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.
Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26261492 Performance Enhancement of Motion Estimation Using SSE2 Technology
Authors: Trung Hieu Tran, Hyo-Moon Cho, Sang-Bock Cho
Abstract:
Motion estimation is the most computationally intensive part in video processing. Many fast motion estimation algorithms have been proposed to decrease the computational complexity by reducing the number of candidate motion vectors. However, these studies are for fast search algorithms themselves while almost image and video compressions are operated with software based. Therefore, the timing constraints for running these motion estimation algorithms not only challenge for the video codec but also overwhelm for some of processors. In this paper, the performance of motion estimation is enhanced by using Intel's Streaming SIMD Extension 2 (SSE2) technology with Intel Pentium 4 processor.Keywords: Motion Estimation, Full Search, Three StepSearch, MMX/SSE/SSE2 Technologies, SIMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991491 Peer-to-Peer Epidemic Algorithms for Reliable Multicasting in Ad Hoc Networks
Authors: Zülküf Genç, Öznur Özkasap
Abstract:
Characteristics of ad hoc networks and even their existence depend on the nodes forming them. Thus, services and applications designed for ad hoc networks should adapt to this dynamic and distributed environment. In particular, multicast algorithms having reliability and scalability requirements should abstain from centralized approaches. We aspire to define a reliable and scalable multicast protocol for ad hoc networks. Our target is to utilize epidemic techniques for this purpose. In this paper, we present a brief survey of epidemic algorithms for reliable multicasting in ad hoc networks, and describe formulations and analytical results for simple epidemics. Then, P2P anti-entropy algorithm for content distribution and our prototype simulation model are described together with our initial results demonstrating the behavior of the algorithm.
Keywords: Ad hoc networks, epidemic, peer-to-peer, reliablemulticast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701490 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study
Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih
Abstract:
This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.
Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27221489 About the Case Portfolio Management Algorithms and Their Applications
Authors: M. Chumburidze, N. Salia, T. Namchevadze
Abstract:
This work deals with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods.
Keywords: Credit network, case portfolio, binary tree, priority queue, stack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761488 Modeling and Simulation of Robotic Arm Movement using Soft Computing
Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh
Abstract:
In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30081487 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm
Authors: Mourad Ykhlef, Hebah ElGibreen
Abstract:
Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251486 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131485 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17411484 Design of Encoding Calculator Software for Huffman and Shannon-Fano Algorithms
Authors: Wilson Chanhemo, Henry. R. Mgombelo, Omar F Hamad, T. Marwala
Abstract:
This paper presents a design of source encoding calculator software which applies the two famous algorithms in the field of information theory- the Shannon-Fano and the Huffman schemes. This design helps to easily realize the algorithms without going into a cumbersome, tedious and prone to error manual mechanism of encoding the signals during the transmission. The work describes the design of the software, how it works, comparison with related works, its efficiency, its usefulness in the field of information technology studies and the future prospects of the software to engineers, students, technicians and alike. The designed “Encodia" software has been developed, tested and found to meet the intended requirements. It is expected that this application will help students and teaching staff in their daily doing of information theory related tasks. The process is ongoing to modify this tool so that it can also be more intensely useful in research activities on source coding.Keywords: Coding techniques, Coding algorithms, Codingefficiency, Encodia, Encoding software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34711483 Topological Queries on Graph-structured XML Data: Models and Implementations
Authors: Hongzhi Wang, Jianzhong Li, Jizhou Luo
Abstract:
In many applications, data is in graph structure, which can be naturally represented as graph-structured XML. Existing queries defined on tree-structured and graph-structured XML data mainly focus on subgraph matching, which can not cover all the requirements of querying on graph. In this paper, a new kind of queries, topological query on graph-structured XML is presented. This kind of queries consider not only the structure of subgraph but also the topological relationship between subgraphs. With existing subgraph query processing algorithms, efficient algorithms for topological query processing are designed. Experimental results show the efficiency of implementation algorithms.Keywords: XML, Graph Structure, Topological query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141482 Improved Algorithms for Construction of Interface Agent Interaction Model
Authors: Huynh Quyet Thang, Le Hai Quan
Abstract:
Interaction Model plays an important role in Modelbased Intelligent Interface Agent Architecture for developing Intelligent User Interface. In this paper we are presenting some improvements in the algorithms for development interaction model of interface agent including: the action segmentation algorithm, the action pair selection algorithm, the final action pair selection algorithm, the interaction graph construction algorithm and the probability calculation algorithm. The analysis of the algorithms also presented. At the end of this paper, we introduce an experimental program called “Personal Transfer System".Keywords: interface agent, interaction model, user model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941481 Blind Non-Minimum Phase Channel Identification Using 3rd and 4th Order Cumulants
Authors: S. Safi, A. Zeroual
Abstract:
In this paper we propose a family of algorithms based on 3rd and 4th order cumulants for blind single-input single-output (SISO) Non-Minimum Phase (NMP) Finite Impulse Response (FIR) channel estimation driven by non-Gaussian signal. The input signal represents the signal used in 10GBASE-T (or IEEE 802.3an-2006) as a Tomlinson-Harashima Precoded (THP) version of random Pulse-Amplitude Modulation with 16 discrete levels (PAM-16). The proposed algorithms are tested using three non-minimum phase channel for different Signal-to-Noise Ratios (SNR) and for different data input length. Numerical simulation results are presented to illustrate the performance of the proposed algorithms.Keywords: Higher Order Cumulants, Channel identification, Ethernet communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14471480 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees
Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar
Abstract:
Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13801479 Design and Implementation of a 10-bit SAR ADC
Authors: Hasmayadi Abdul Majid, Rohana Musa
Abstract:
This paper presents the development of a 38.5 kS/s 10-bit low power SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and SAR digital logic to create 10 effective bits while consuming less than 7.8 mW with a 3.3 V power supply.
Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54371478 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311477 Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments
Authors: Mohammad Shams Esfand Abadi, John Hakon Husøy
Abstract:
Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance.Keywords: Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861476 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network
Authors: O. Siriporn, S. Benjawan
Abstract:
This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.
Keywords: Unsupervised, clustering, anomaly, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111475 Automatic Vehicle Identification by Plate Recognition
Authors: Serkan Ozbay, Ergun Ercelebi
Abstract:
Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75851474 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix
Authors: Tao Dai, Andy Adler, Behnam Shahrrava
Abstract:
This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.
Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301473 Object Tracking System Using Camshift, Meanshift and Kalman Filter
Authors: Afef Salhi, Ameni Yengui Jammaoussi
Abstract:
This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.
Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82501472 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values
Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias
Abstract:
Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.
Keywords: regression algorithms, supervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34171471 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874