Search results for: DOM tree.
261 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm
Authors: Essam Al Daoud
Abstract:
This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392260 Minimal Spanning Tree based Fuzzy Clustering
Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi
Abstract:
Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405259 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.
Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770258 Exploring Tree Growth Variables Influencing Carbon Sequestration in the Face of Climate Change
Authors: F. S. Eguakun, P. O. Adesoye
Abstract:
One of the major problems being faced by human society is that the global temperature is believed to be rising due to human activity that releases carbon IV Oxide (CO2) to the atmosphere. Carbon IV Oxide is the most important greenhouse gas influencing global warming and possible climate change. With climate change becoming alarming, reducing CO2 in our atmosphere has become a primary goal of international efforts. Forest lands are major sink and could absorb large quantities of carbon if the trees are judiciously managed. The study aims at estimating the carbon sequestration capacity of Pinus caribaea (pine) and Tectona grandis (Teak) under the prevailing environmental conditions and exploring tree growth variables that influences the carbon sequestration capacity in Omo Forest Reserve, Ogun State, Nigeria. Improving forest management by manipulating growth characteristics that influences carbon sequestration could be an adaptive strategy of forestry to climate change. Random sampling was used to select Temporary Sample Plots (TSPs) in the study area from where complete enumeration of growth variables was carried out within the plots. The data collected were subjected to descriptive and correlational analyses. The results showed that average carbon stored by Pine and Teak are 994.4±188.3 Kg and 1350.7±180.6 Kg respectively. The difference in carbon stored in the species is significant enough to consider choice of species relevant in climate change adaptation strategy. Tree growth variables influence the capacity of the tree to sequester carbon. Height, diameter, volume, wood density and age are positively correlated to carbon sequestration. These tree growth variables could be manipulated by the forest manager as an adaptive strategy for climate change while plantations of high wood density species could be relevant for management strategy to increase carbon storage.
Keywords: Adaptation, carbon sequestration, climate change, growth variables, wood density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315257 A Clock Skew Minimization Technique Considering Temperature Gradient
Authors: Se-Jin Ko, Deok-Min Kim, Seok-Yoon Kim
Abstract:
The trend of growing density on chips has increases not only the temperature in chips but also the gradient of the temperature depending on locations. In this paper, we propose the balanced skew tree generation technique for minimizing the clock skew that is affected by the temperature gradients on chips. We calculate the interconnect delay using Elmore delay equation, and find out the optimal balanced clock tree by modifying the clock trees generated through the Deferred Merge Embedding(DME) algorithm. The experimental results show that the distance variance of clock insertion points with and without considering the temperature gradient can be lowered below 54% and we confirm that the skew is remarkably decreased after applying the proposed technique.Keywords: clock, clock-skew, temperature, thermal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712256 Plant Varieties Selection System
Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh
Abstract:
In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.
Keywords: Plant varieties selection system, decision tree, expert recommendation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792255 Phenology of the Parah tree (Elateriospermumtapos) using a GAPS Model
Authors: S. Chumkiew, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
This work investigated the phenology of Parah tree (Elateriospermum tapos) using the General Purpose Atmosphere Plant Soil Simulator (GAPS model) to determine the amount of Plant Available Water (PAW) in the soil. We found the correlation between PAW and the timing of budburst and flower burst at Khao Nan National Park, Nakhon Si Thammarat, Thailand. PAW from the GAPS model can be used as an indicator of soil water stress. The low amount of PAW may lead to leaf shedding in Parah trees.Keywords: Basic GAPS, Parah (Elateriospermum tapos), Phenology, Climate, Nakhon Si Thammarat, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720254 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701253 Trees for Air Pollution Tolerance to Develop Green Belts as an Ecological Mitigation
Authors: Rahma Al Maawali, Hameed Sulaiman
Abstract:
Air pollution both from point and non-point sources is difficult to control once released in to the atmosphere. There is no engineering method known available to ameliorate the dispersed pollutants. The only suitable approach is the ecological method of constructing green belts in and around the pollution sources. Air pollution in Muscat, Oman is a serious concern due to ever increasing vehicles on roads. Identifying the air pollution tolerance levels of species is important for implementing pollution control strategies in the urban areas of Muscat. Hence, in the present study, Air Pollution Tolerance Index (APTI) for ten avenue tree species was evaluated by analyzing four bio-chemical parameters, plus their Anticipated Performance Index (API) in field conditions. Based on the two indices, Ficus benghalensis was the most suitable one with the highest performance score. Conocarpus erectuse, Phoenix dactylifera, and Pithcellobium dulce were found to be good performers and are recommended for extensive planting. Azadirachta indica which is preferred for its dense canopy is qualified in the moderate category. The rest of the tree species expressed lower API score of less than 51, hence cannot be considered as suitable species for pollution mitigation plantation projects.Keywords: Air pollution tolerance index, avenue tree species, bio-chemical parameters, Muscat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373252 An Effective Framework for Chinese Syntactic Parsing
Authors: Xing Li, Chengqing Zong
Abstract:
This paper presents an effective framework for Chinesesyntactic parsing, which includes two parts. The first one is a parsing framework, which is based on an improved bottom-up chart parsingalgorithm, and integrates the idea of the beam search strategy of N bestalgorithm and heuristic function of A* algorithm for pruning, then get multiple parsing trees. The second is a novel evaluation model, which integrates contextual and partial lexical information into traditional PCFG model and defines a new score function. Using this model, the tree with the highest score is found out as the best parsing tree. Finally,the contrasting experiment results are given. Keywords?syntactic parsing, PCFG, pruning, evaluation model.
Keywords: syntactic parsing, PCFG, pruning, evaluation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220251 Compact Binary Tree Representation of Logic Function with Enhanced Throughput
Authors: Padmanabhan Balasubramanian, C. Ardil
Abstract:
An effective approach for realizing the binary tree structure, representing a combinational logic functionality with enhanced throughput, is discussed in this paper. The optimization in maximum operating frequency was achieved through delay minimization, which in turn was possible by means of reducing the depth of the binary network. The proposed synthesis methodology has been validated by experimentation with FPGA as the target technology. Though our proposal is technology independent, yet the heuristic enables better optimization in throughput even after technology mapping for such Boolean functionality; whose reduced CNF form is associated with a lesser literal cost than its reduced DNF form at the Boolean equation level. For cases otherwise, our method converges to similar results as that of [12]. The practical results obtained for a variety of case studies demonstrate an improvement in the maximum throughput rate for Spartan IIE (XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic families by 10.49% and 13.68% respectively. With respect to the LUTs and IOBUFs required for physical implementation of the requisite non-regenerative logic functionality, the proposed method enabled savings to the tune of 44.35% and 44.67% respectively, over the existing efficient method available in literature [12].
Keywords: Binary logic tree, FPGA based design, Boolean function, Throughput rate, CNF, DNF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907250 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939249 Granulation using Clustering and Rough Set Theory and its Tree Representation
Authors: Girish Kumar Singh, Sonajharia Minz
Abstract:
Granular computing deals with representation of information in the form of some aggregates and related methods for transformation and analysis for problem solving. A granulation scheme based on clustering and Rough Set Theory is presented with focus on structured conceptualization of information has been presented in this paper. Experiments for the proposed method on four labeled data exhibit good result with reference to classification problem. The proposed granulation technique is semi-supervised imbibing global as well as local information granulation. To represent the results of the attribute oriented granulation a tree structure is proposed in this paper.Keywords: Granular computing, clustering, Rough sets, datamining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718248 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117247 Attacks and Counter Measures in BST Overlay Structure of Peer-To-Peer System
Authors: Guruprasad Khataniar, Hitesh Tahbildar, Prakriti Prava Das
Abstract:
There are various overlay structures that provide efficient and scalable solutions for point and range query in a peer-topeer network. Overlay structure based on m-Binary Search Tree (BST) is one such popular technique. It deals with the division of the tree into different key intervals and then assigning the key intervals to a BST. The popularity of the BST makes this overlay structure vulnerable to different kinds of attacks. Here we present four such possible attacks namely index poisoning attack, eclipse attack, pollution attack and syn flooding attack. The functionality of BST is affected by these attacks. We also provide different security techniques that can be applied against these attacks.Keywords: BST, eclipse attack, index poisoning attack, pollution attack, syn flooding attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621246 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN
Authors: N. Muthukumaran, R. Ravi
Abstract:
The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.
Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391245 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: Anthropometric data, data mining, decision tree, garments manufacturing, ready-made garments, sizing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959244 Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding
Authors: K.Somasundaram, I.Kaspar Raj
Abstract:
In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.Keywords: Bit plane, Block Truncation Coding, Image compression, lossy compression, quad tree segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749243 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760242 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541241 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227240 Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios
Authors: Omar F. Hamad, T. Marwala
Abstract:
With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.
Keywords: Overlay multicast, Available bandwidth, Max-heapform overlay, Induced packet loss, Bandwidth-latency product, Node Gain Score (NGS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570239 Comparison of CPW Fed Microstrip Patch Antennas with Varied Ground Structures for Fixed Satellite Applications
Authors: Deepanshu Kaushal, T. Shanmuganantham
Abstract:
This paper draws a comparison between two microstrip patch antennas having different ground structures. The designs utilize 45 mm x 40 mm x 1.6 mm FR4 epoxy substrate (relative permittivity of 4.4 and dielectric loss tangent of 0.02) and CPW feeding technique. The design 1 uses conducting partial ground plates along the two sides of the radiating X’mas tree shaped patch. The design 2 utilizes an X’mas tree shaped slotted ground structure that features a circular radiating patch. A comparative analysis of results of both designs has been carried. The two designs are intended to serve the fixed satellite applications in X and Ku band respectively.
Keywords: CPW feed, partial ground structures, slotted ground structures, fixed satellite applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770238 Comparative Study - Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important in avoid incident of natural disaster which can cause loss in involved area. This review paper involves three techniques from artificial intelligence namely logistic regression, decisions tree, and random forest which used in making precipitation forecast. These combination techniques through VAR model in finding advantages and strength for every technique in forecast process. Data contains variables from rain domain. Adaptation of artificial intelligence techniques involved on rain domain enables the process to be easier and systematic for precipitation forecast.
Keywords: Logistic regression, decisions tree, random forest, VAR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041237 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488236 CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel
Authors: Suguru Yoshioka, Satoshi Tojo
Abstract:
This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.Keywords: communication channel, computational tree logic, reasoning system, temporal epistemic logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246235 Unnoticeable Mumps Infection in India: Does MMR Vaccine Protect against Circulating Mumps Virus Genotype C?
Authors: Jeevan Malayan, Aparna Warrier, Padmasani Venkat Ramanan, Sanjeeva Reddy N, Elanchezhiyan Manickan
Abstract:
MMR vaccine failure had been reported globally and here we report that it occurs now in India. Samples were collected from clinically suspected mumps cases were subjected for anti mumps antibodies, virus isolation, RT-PCR, sequencing and phylogenetic tree analysis. 56 samples collected from men and women belonging to various age groups. 30 had been vaccinated and the status of 26 patients was unknown. 28 out of 30 samples were found to be symptomatic and positive for Mumps IgM, indicating active mumps infection in 93.4% of the vaccinated population. A phylogenetic tree comparison of the clinical isolate is shown to be genotype C which is distinct from vaccine strain. Our study clearly sending warning signs that MMR vaccine is a failure and it needs to be revamped for the human use by increasing its efficacy and efficiency.Keywords: Genotype C, Mumps virus, MMR vaccine, Sero types.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459234 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036233 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network
Authors: M. Saravanan, M. Madheswaran
Abstract:
Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.
Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786232 Estimation Model of Dry Docking Duration Using Data Mining
Authors: Isti Surjandari, Riara Novita
Abstract:
Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.
Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433