Search results for: learning retrieval agent
1309 A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)
Authors: Rekha Kandwal, Kamal K.Bharadwaj
Abstract:
Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.
Keywords: Censored production rules, cumulative learning, data mining, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14851308 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori, Rina Suzuki
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.
Keywords: Catastrophic forgetting, dual-network, temporal sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251307 Synthesis, Characterization and Impedance Analysis of Polypyrrole/La0.7Ca0.3MnO3 Nanocomposites
Authors: M. G. Smitha, M. V. Murugendrappa
Abstract:
Perovskite manganite La0.7Ca0.3MnO3 was synthesized by Sol-gel method. Polymerization of pyrrole was carried by in-situ polymerization method. The composite of pyrrole (Py)/La0.7Ca0.3MnO3 composite in the presence of oxidizing agent ammonium per sulphate to synthesize polypyrrole (PPy)/La0.7Ca0.3MnO3 (LCM) composite was carried out by the same in-situ polymerization method. The PPy/LCM composites were synthesized with varying compositions like 10, 20, 30, 40, and 50 wt.% of LCM in Py. The surface morphologies of these composites were analyzed by using scanning electron microscope (SEM). The images show that LCM particles are embedded in PPy chain. The impedance measurement of PPy/LCM at different temperature ranges from 30 to 180 °C was studied using impedance analyzer. The study shows that impedance is frequency and temperature dependent and it is found to decrease with increase in frequency and temperature.Keywords: Polypyrrole, sol gel, impedance, composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191306 The Influence of Project-Based Learning and Outcome-Based Education: Interior Design Tertiary Students in Focus
Authors: Omneya Messallam
Abstract:
Technology has been developed dramatically in most of the educational disciplines. For instance, digital rendering subject, which is being taught in both Interior and Architecture fields, is witnessing almost annually updated software versions. A lot of students and educators argued that there will be no need for manual rendering techniques to be learned. Therefore, the Interior Design Visual Presentation 1 course (ID133) has been chosen from the first level of the Interior Design (ID) undergraduate program, as it has been taught for six years continually. This time frame will facilitate sound observation and critical analysis of the use of appropriate teaching methodologies. Furthermore, the researcher believes in the high value of the manual rendering techniques. The course objectives are: to define the basic visual rendering principles, to recall theories and uses of various types of colours and hatches, to raise the learners’ awareness of the value of studying manual render techniques, and to prepare them to present their work professionally. The students are female Arab learners aged between 17 and 20. At the outset of the course, the majority of them demonstrated negative attitude, lacking both motivation and confidence in manual rendering skills. This paper is a reflective appraisal of deploying two student-centred teaching pedagogies which are: Project-based learning (PBL) and Outcome-based education (OBE) on ID133 students. This research aims of developing some teaching strategies to enhance the quality of teaching in this given course over an academic semester. The outcome of this research emphasized the positive influence of applying such educational methods on improving the quality of students’ manual rendering skills in terms of: materials, textiles, textures, lighting, and shade and shadow. Furthermore, it greatly motivated the students and raised the awareness of the importance of learning the manual rendering techniques.
Keywords: Manual renders, outcome-based education, project-based learning, personal competences, and visual presentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8481305 DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems
Authors: Federico Cabitza, Bernardo Dal Seno
Abstract:
In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.Keywords: Knowledge-Based Systems, Expert Systems, Distributed Inference Systems, Parallel Production Systems, Ambient Intelligence, Mobile Agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961304 Cultivating Individuality and Equality in Education: Ideas on Respecting Dimensions of Diversity within the Classroom
Authors: Melissa C. LaDuke
Abstract:
This systematic literature review sought to explore the dimensions of diversity that can affect classroom learning. This review is significant as it can aid educators in reaching more of their diverse student population and creating supportive classrooms for teachers and students. For this study, peer-reviewed articles were found and compiled using Google Scholar. Key terms used in the search include student individuality, classroom equality, student development, teacher development, and teacher individuality. Relevant educational standards such as Common Core and Partnership for the 21st Century were also included as part of this review. Student and teacher individuality and equality is discussed as well as methods to grow both within educational settings. Embracing student and teacher individuality was found to be key as it may affect how each person interacts with given information. One method to grow individuality and equality in educational settings included drafting and employing revised teaching standards which include various Common Core and US State standards. Another was to use educational theories such as constructivism, cognitive learning, and Experiential Learning Theory. However, barriers to growing individuality, such as not acknowledging differences in a population’s dimensions of diversity, still exist. Studies found preserving the dimensions of diversity owned by both teachers and students yielded more positive and beneficial classroom experiences.
Keywords: Classroom equality, student development, student individuality, teacher development, teacher individuality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6911303 Experimental teaching, Perceived usefulness, Ease of use, Learning Interest and Science Achievement of Taiwan 8th Graders in TIMSS 2007 Database
Authors: Pei Wen Liao, Tsung Hau Jen
Abstract:
the data of Taiwanese 8th grader in the 4th cycle of Trends in International Mathematics and Science Study (TIMSS) are analyzed to examine the influence of the science teachers- preference in experimental teaching on the relationships between the affective variables ( the perceived usefulness of science, ease of using science and science learning interest) and the academic achievement in science. After dealing with the missing data, 3711 students and 145 science teacher-s data were analyzed through a Hierarchical Linear Modeling technique. The major objective of this study was to determine the role of the experimental teaching moderates the relationship between perceived usefulness and achievement.Keywords: TIMSS database, Science achievement, Experimental teaching, Perceived Usefulness, Perceived Ease of Use
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571302 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971301 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites
Authors: S. Z. A. Zaidi, A. Crosky
Abstract:
Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding. Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.Keywords: Natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11711300 Management of English Language Teaching in Higher Education
Authors: Vishal D. Pandya
Abstract:
A great deal of perceptible change has been taking place in the way our institutions of higher learning are being managed in India today. It is believed that managers, whose intuition proves to be accurate, often tend to be the most successful, and this is what makes them almost like entrepreneurs. A certain entrepreneurial spirit is what is expected and requires a degree of insight of the manager to be successful depending upon the situational and more importantly, the heterogeneity as well as the socio-cultural aspect. Teachers in Higher Education have to play multiple roles to make sure that the Learning-Teaching process becomes effective in the real sense of the term. This paper makes an effort to take a close look at that, especially in the context of the management of English language teaching in Higher Education and, therefore, focuses on the management of English language teaching in higher education by understanding target situation analyses at the socio-cultural level.
Keywords: Management, language teaching, English language teaching, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961299 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.
Keywords: Deep learning network, smart metering, water end use, water-energy data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641298 The Prospects and Challenges of Open Learning and Distance Education in Malawi
Authors: Andrew Chimpololo
Abstract:
Open and distance learning is a fairly new concept in Malawi. The major public provider, the Malawi College of Distance Education, rolled out its activities only about 40 years ago. Over the years, the demand for distance education has tremendously increased. The present government has displayed positive political will to uplift ODL as outlined in the Malawi Growth and Development Strategy as well as the National Education Sector Plan. A growing national interest in education coupled with political stability and a booming ICT industry also raise hope for success. However, a fragile economy with a GNI per capita of -US$ 200 over the last decade, poor public funding, erratic power supply and lack of expertise put strain on efforts towards the promotion of ODL initiatives. Despite the challenges, the nation appears determined to go flat out and explore all possible avenues that could revolutionise education access and equity through ODL.Keywords: challenges, distance education, Malawi, openlearning, prospects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37221297 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia
Authors: Gaya Tridinanti
Abstract:
Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.Keywords: Acquisition, enhancing, digital storytelling, English vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551296 The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation
Authors: L. Bih Ni, D. Norizah Ag Kiflee, T. Choon Keong, R. Talip, S. Singh Bikar Singh, M. Noor Mad Japuni, R. Talin
Abstract:
The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.
Keywords: Video clips, Historical Learning and Facilitation, Achievement, Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9481295 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification
Authors: M. Bharath, Vasudevan Raghavan, B. V. S. S. S. Prasad, S. R. Chakravarthy
Abstract:
In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.
Keywords: Bubbling fluidized bed reactor, coal gasification, calorific value, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641294 Preparation and Physical Characterization of Nanocomposites of PLA / Layered Silicates
Authors: I. Restrepo, S. Solorzano
Abstract:
This work was focused in to study the compatibility, dispersion and exfoliation of modified nanoclays in biodegradable polymers and evaluate its effect on the physical, mechanical and thermal properties on the biodegradable matrix used. The formulations have been developed with polylactic acid (PLA) and organically modified montmorillonite-type commercial nanoclays (Cloisite 15, Cloisite 20, and Cloisite 30B) in the presence of a plasticizer agent, specifically Polyethylene Glycol of low molecular weight. Different compositions were evaluated, in order to identify the influence of each nanoclayin the polymeric matrix. The mixtures were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (DRX), transmission electron microscopy (TEM) and Tensile Test. These tests have allowed understanding the behavior of each of the mixtures developed.
Keywords: Biopolymers, Nanoclays, polylacticacid (PLA), polymer blends.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26891293 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33331292 Enabling Integration across Heterogeneous Care Networks
Authors: Federico Cabitza, Marco P. Locatelli, Marcello Sarini, Carla Simone
Abstract:
The paper shows how the CASMAS modeling language, and its associated pervasive computing architecture, can be used to facilitate continuity of care by providing members of patientcentered communities of care with a support to cooperation and knowledge sharing through the usage of electronic documents and digital devices. We consider a scenario of clearly fragmented care to show how proper mechanisms can be defined to facilitate a better integration of practices and information across heterogeneous care networks. The scenario is declined in terms of architectural components and cooperation-oriented mechanisms that make the support reactive to the evolution of the context where these communities operate.Keywords: Pervasive Computing, Communities of Care, HeterogeneousCare Networks, Multi-Agent System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591291 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66341290 Study on Extraction of Niobium Oxide from Columbite–Tantalite Concentrate
Authors: Htet Htike Htwe, Kay Thi Lwin
Abstract:
The principal objective of this study is to be able to extract niobium oxide from columbite-tantalite concentrate of Thayet Kon Area in Nay Phi Taw. It is recovered from columbite-tantalite concentrate which contains 19.29 % Nb2O5.The recovery of niobium oxide from columbite-tantalite concentrate can be divided into three main sections, namely, digestion of the concentrate, recovery from the leached solution and precipitation and calcinations. The concentrate was digested with hydrofluoric acid and sulfuric acid. Of the various parameters that effect acidity and time were studied. In the recovery section solvent extraction process using methyl isobutyl ketone was investigated. Ammonium hydroxide was used as a precipitating agent and the precipitate was later calcined. The percentage of niobium oxide is 74%.Keywords: Calcination, Digestion, Precipitation, SolventExtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35361289 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931288 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10951287 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13251286 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321285 Developing OMS in IHL
Authors: Suzana Basaruddin, Haryani Haron, Siti Arpah Noodin
Abstract:
Managing knowledge of research is one way to ensure just in time information and knowledge to support research strategist and activities. Unfortunately researcher found the vital research knowledge in IHL (Institutions of Higher Learning) are scattered, unstructured and unorganized. Aiming on lay aside conceptual foundations for understanding and developing OMS (Organizational Memory System) to facilitate research in IHL, this research revealed ten factors contributed to the needs of research in the IHL and seven internal challenges of IHL in promoting research to their academic members. This study then suggested a comprehensive support of managing research knowledge using Organizational Memory System (OMS). Eight OMS characteristics to support research were identified. Finally the initial work in designing OMS was projected using knowledge taxonomy. All analysis is derived from pertinent research paper related to research in IHL and OMS. Further study can be conducted to validate and verify results presented.Keywords: corporate memory, Institutions of Higher Learning, organizational memory system, research
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111284 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.
Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571283 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8951282 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes
Authors: Salam M. H. Kareem
Abstract:
Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.
Keywords: Physical education, swimming classes, teaching process, teaching pyramid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11111281 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples
Authors: Ahmed S. Fayed, Umima M. Mansour
Abstract:
Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.
Keywords: PVC sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12641280 From Research to Teaching: Integrating Social Robotics in Engineering Degrees
Authors: Yolanda Bolea, Antoni Grau, Alberto Sanfeliu
Abstract:
When industrial robotics subject is taught in a degree in robotics, social and humanoid robotics concepts are rarely mentioned because this field of robotics is not used in industry. In this paper, an educational project related with industrial robotics is presented which includes social and humanoid robotics. The main motivations to realize this research are: i) humanoid robotics will be appearing soon in industry, the experience, based on research projects, indicates their deployment sooner than expected; ii) its educational interest, technology is shared with industrial robotics; iii) it is very attractive, students are interested in this part of the subject and thus they are interested in the whole subject. As a pedagogical methodology, the use of the problem-based learning is considered. Those concepts are introduced in a seminar during the last part of the subject and developed as a set of practices in the laboratory.Keywords: Higher education in robotics, humanoid robotics, problem-based learning, social robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658