Search results for: Data mining andInformation Extraction
6721 Spatially Random Sampling for Retail Food Risk Factors Study
Authors: Guilan Huang
Abstract:
In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.
Keywords: Geospatial technology, restaurant, retail food risk factors study, spatial random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14656720 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10146719 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.
Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7186718 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18776717 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain and how various stakeholders will interact with the system.
Keywords: Internet of Things, IoT, blockchain, data integrity, authentication, data privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4126716 Multidimensional Performance Management
Authors: David Wiese
Abstract:
In order to maximize efficiency of an information management platform and to assist in decision making, the collection, storage and analysis of performance-relevant data has become of fundamental importance. This paper addresses the merits and drawbacks provided by the OLAP paradigm for efficiently navigating large volumes of performance measurement data hierarchically. The system managers or database administrators navigate through adequately (re)structured measurement data aiming to detect performance bottlenecks, identify causes for performance problems or assessing the impact of configuration changes on the system and its representative metrics. Of particular importance is finding the root cause of an imminent problem, threatening availability and performance of an information system. Leveraging OLAP techniques, in contrast to traditional static reporting, this is supposed to be accomplished within moderate amount of time and little processing complexity. It is shown how OLAP techniques can help improve understandability and manageability of measurement data and, hence, improve the whole Performance Analysis process.
Keywords: Data Warehousing, OLAP, Multidimensional Navigation, Performance Diagnosis, Performance Management, Performance Tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21356715 A New Algorithm for Enhanced Robustness of Copyright Mark
Authors: Harsh Vikram Singh, S. P. Singh, Anand Mohan
Abstract:
This paper discusses a new heavy tailed distribution based data hiding into discrete cosine transform (DCT) coefficients of image, which provides statistical security as well as robustness against steganalysis attacks. Unlike other data hiding algorithms, the proposed technique does not introduce much effect in the stegoimage-s DCT coefficient probability plots, thus making the presence of hidden data statistically undetectable. In addition the proposed method does not compromise on hiding capacity. When compared to the generic block DCT based data-hiding scheme, our method found more robust against a variety of image manipulating attacks such as filtering, blurring, JPEG compression etc.
Keywords: Information Security, Robust Steganography, Steganalysis, Pareto Probability Distribution function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17976714 Liveability of Kuala Lumpur City Centre: An Evaluation of the Happiness Level of the Streets- Activities
Authors: Shuhana Shamsuddin, Nur Rasyiqah Abu Hassan, Ahmad Bashri Sulaiman
Abstract:
Liveable city is referred to as the quality of life in an area that contributes towards a safe, healthy and enjoyable place. This paper discusses the role of the streets- activities in making Kuala Lumpur a liveable city and the happiness level of the residents towards the city-s street activities. The study was conducted using the residents of Kuala Lumpur. A mixed method technique is used with the quantitative data as a main data and supported by the qualitative data. Data were collected using questionnaires, observation and also an interview session with a sample of residents of Kuala Lumpur. The sampling technique is based on multistage cluster data sampling. The findings revealed that, there is still no significant relationship between the length of stay of the resident in Kuala Lumpur with the happiness level towards the street activities that occurred in the city.Keywords: Liveable city, activities, urban design quality, quality of life, happiness level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28906713 The Potency of Sandfish (Holothuria scraba) as a Source of Natural Aphrodisiacs
Authors: Etty Riani, Endang Gumbira-Said, Kashwar Syamsu, Kustiariyah, Kaseno, Muhammad Reza Cordova
Abstract:
Sandfish is one of marine biota that has a biomedicine (bioactive compound) potency. People in Gorontalo Province, Indonesia, have been sandfish as an aphrodisiac for men as it is believed that sandfish has a steroid hormone potency. This research aims at studying using the steroid hormone potency from every fraction of sandfish (meat and innards) and its activity of male reproduction (rooster) as an aphrodisiac. Steroid extraction was done using Touchstone and Kasparow method, and then it was utilized to study the effectiveness of bioassay of rooster. This research had five treatments and was done in complete randomized design. Based on Lieberman-Burchard and bioassay test, the author found that sandfish extract contains steroid hormone. Sandfish extract was able to enrich testosterone and cholesterol concentration in blood serum; fastening secondary reproduction characteristics of the rooster, and increasing growth as well as improving rooster’s comb. Therefore, sandfish steroid is potential to be used as an aphrodisiac for men.
Keywords: Aphrodisiac, sandfish, secondary reproduction characteristic, steroid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40306712 A Framework for Urdu Language Translation using LESSA
Authors: Imran Sarwar Bajwa
Abstract:
Internet is one of the major sources of information for the person belonging to almost all the fields of life. Major language that is used to publish information on internet is language. This thing becomes a problem in a country like Pakistan, where Urdu is the national language. Only 10% of Pakistan mass can understand English. The reason is millions of people are deprived of precious information available on internet. This paper presents a system for translation from English to Urdu. A module LESSA is used that uses a rule based algorithm to read the input text in English language, understand it and translate it into Urdu language. The designed approach was further incorporated to translate the complete website from English language o Urdu language. An option appears in the browser to translate the webpage in a new window. The designed system will help the millions of users of internet to get benefit of the internet and approach the latest information and knowledge posted daily on internet.Keywords: Natural Language Translation, Text Understanding, Knowledge extraction, Text Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26666711 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16486710 Cloud Computing Support for Diagnosing Researches
Authors: A. Amirov, O. Gerget, V. Kochegurov
Abstract:
One of the main biomedical problem lies in detecting dependencies in semi structured data. Solution includes biomedical portal and algorithms (integral rating health criteria, multidimensional data visualization methods). Biomedical portal allows to process diagnostic and research data in parallel mode using Microsoft System Center 2012, Windows HPC Server cloud technologies. Service does not allow user to see internal calculations instead it provides practical interface. When data is sent for processing user may track status of task and will achieve results as soon as computation is completed. Service includes own algorithms and allows diagnosing and predicating medical cases. Approved methods are based on complex system entropy methods, algorithms for determining the energy patterns of development and trajectory models of biological systems and logical–probabilistic approach with the blurring of images.
Keywords: Biomedical portal, cloud computing, diagnostic and prognostic research, mathematical data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16446709 Belt Conveyor Dynamics in Transient Operation for Speed Control
Authors: D. He, Y. Pang, G. Lodewijks
Abstract:
Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are significantly important since the poor dynamics might result in risks. In this paper, the potential risks in transient operation will be analyzed. An existing finite element model will be applied to build a conveyor model, and simulations will be carried out to analyze the conveyor dynamics. In order to realize the soft speed regulation, Harrison’s sinusoid acceleration profile will be applied, and Lodewijks estimator will be built to approximate the required acceleration time. A long inclined belt conveyor will be studied with two major simulations. The conveyor dynamics will be given.Keywords: Belt conveyor, speed control, transient operation, dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23316708 Estimating the Flow Velocity Using Flow Generated Sound
Authors: Saeed Hosseini, Ali Reza Tahavvor
Abstract:
Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is found. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.Keywords: Flow generated sound, sound processing, speed, wave power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23686707 Exponential Particle Swarm Optimization Approach for Improving Data Clustering
Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi
Abstract:
In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.Keywords: Particle swarm optimization, data clustering, exponential PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16906706 Biosignal Measurement using Personal Area Network based on Human Body Communication
Authors: Yong-Gyu Lee, Jin-Hee Park, Gilwon Yoon
Abstract:
In this study, we introduced a communication system where human body was used as medium through which data were transferred. Multiple biosignal sensing units were attached to a subject and wireless personal area network was formed. Data of the sensing units were shared among them. We used wideband pulse communication that was simple, low-power consuming and high data rated. Each unit functioned as independent communication device or node. A method of channel search and communication among the modes was developed. A protocol of carrier sense multiple access/collision detect was implemented in order to avoid data collision or interferences. Biosignal sensing units should be located at different locations due to the nature of biosignal origin. Our research provided a flexibility of collecting data without using electrical wires. More non-constrained measurement was accomplished which was more suitable for u-Health monitoring.Keywords: Human body communication, wideband pulse communication, personal area network, biosignal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21776705 Development and Evaluation of a Portable Ammonia Gas Detector
Authors: Jaheon Gu, Wooyong Chung, Mijung Koo, Seonbok Lee, Gyoutae Park, Sangguk Ahn, Hiesik Kim, Jungil Park
Abstract:
In this paper, we present a portable ammonia gas detector for performing the gas safety management efficiently. The display of the detector is separated from its body. The display module is received the data measured from the detector using ZigBee. The detector has a rechargeable li-ion battery which can be use for 11~12 hours, and a Bluetooth module for sending the data to the PC or the smart devices. The data are sent to the server and can access using the web browser or mobile application. The range of the detection concentration is 0~100ppm.
Keywords: Ammonia, detector, gas safety, portable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15386704 LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard
Authors: Omid F. Valilai, Mahmoud Houshmand
Abstract:
Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.Keywords: CAx, Collaboration management, STEP applicationmodules, STEP standard, XML data structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22186703 Grocery Customer Behavior Analysis using RFID-based Shopping Paths Data
Authors: In-Chul Jung, Young S. Kwon
Abstract:
Knowing about the customer behavior in a grocery has been a long-standing issue in the retailing industry. The advent of RFID has made it easier to collect moving data for an individual shopper's behavior. Most of the previous studies used the traditional statistical clustering technique to find the major characteristics of customer behavior, especially shopping path. However, in using the clustering technique, due to various spatial constraints in the store, standard clustering methods are not feasible because moving data such as the shopping path should be adjusted in advance of the analysis, which is time-consuming and causes data distortion. To alleviate this problem, we propose a new approach to spatial pattern clustering based on the longest common subsequence. Experimental results using real data obtained from a grocery confirm the good performance of the proposed method in finding the hot spot, dead spot and major path patterns of customer movements.Keywords: customer path, shopping behavior, exploratoryanalysis, LCS, RFID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31486702 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand
Abstract:
Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21946701 Wood Species Recognition System
Authors: Bremananth R, Nithya B, Saipriya R
Abstract:
The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24626700 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22446699 Analysis and Comparison of Image Encryption Algorithms
Authors: İsmet Öztürk, İbrahim Soğukpınar
Abstract:
With the fast progression of data exchange in electronic way, information security is becoming more important in data storage and transmission. Because of widely using images in industrial process, it is important to protect the confidential image data from unauthorized access. In this paper, we analyzed current image encryption algorithms and compression is added for two of them (Mirror-like image encryption and Visual Cryptography). Implementations of these two algorithms have been realized for experimental purposes. The results of analysis are given in this paper.
Keywords: image encryption, image cryptosystem, security, transmission
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49586698 Utilization and Characterizations of Olive Oil Industry By-Products
Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry
Abstract:
A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.Keywords: Antimicrobial hydrogel, carboxymethyl cellulose, cellulose, grafting, olive pulp.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22486697 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City
Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jos´e L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jos´e F. Vicent
Abstract:
This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people‘s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.
Keywords: Social networks, Foursquare, spatial analysis, data visualization, geocomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26766696 Long-Range Dependence of Financial Time Series Data
Authors: Chatchai Pesee
Abstract:
This paper examines long-range dependence or longmemory of financial time series on the exchange rate data by the fractional Brownian motion (fBm). The principle of spectral density function in Section 2 is used to find the range of Hurst parameter (H) of the fBm. If 0< H <1/2, then it has a short-range dependence (SRD). It simulates long-memory or long-range dependence (LRD) if 1/2< H <1. The curve of exchange rate data is fBm because of the specific appearance of the Hurst parameter (H). Furthermore, some of the definitions of the fBm, long-range dependence and selfsimilarity are reviewed in Section II as well. Our results indicate that there exists a long-memory or a long-range dependence (LRD) for the exchange rate data in section III. Long-range dependence of the exchange rate data and estimation of the Hurst parameter (H) are discussed in Section IV, while a conclusion is discussed in Section V.Keywords: Fractional Brownian motion, long-rangedependence, memory, short-range dependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18846695 Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)
Authors: Noor A. Draman, Campbell Wilson, Sea Ling
Abstract:
Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.
Keywords: Bio-inspired audio content-based retrieval framework, features selection technique, low/high level features, artificial immune system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15936694 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27116693 Recovering Artifacts from Legacy Systems Using Pattern Matching
Authors: Ghulam Rasool, Ilka Philippow
Abstract:
Modernizing legacy applications is the key issue facing IT managers today because there's enormous pressure on organizations to change the way they run their business to meet the new requirements. The importance of software maintenance and reengineering is forever increasing. Understanding the architecture of existing legacy applications is the most critical issue for maintenance and reengineering. The artifacts recovery can be facilitated with different recovery approaches, methods and tools. The existing methods provide static and dynamic set of techniques for extracting architectural information, but are not suitable for all users in different domains. This paper presents a simple and lightweight pattern extraction technique to extract different artifacts from legacy systems using regular expression pattern specifications with multiple language support. We used our custom-built tool DRT to recover artifacts from existing system at different levels of abstractions. In order to evaluate our approach a case study is conducted.
Keywords: Artifacts recovery, Pattern matching, Reverseengineering, Program understanding, Regular expressions, Sourcecode analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18976692 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate
Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim
Abstract:
Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.Keywords: Beam fatigue test, chemical property, mechanical property, physical property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814