Search results for: Bi-directional associative memory (BAM) neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2776

Search results for: Bi-directional associative memory (BAM) neural networks

1366 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
1365 Nonlinear Modeling of the PEMFC Based On NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear identification, NNARX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1364 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
1363 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1362 Architecture Based on Dynamic Graphs for the Dynamic Reconfiguration of Farms of Computers

Authors: Carmen Navarrete, Eloy Anguiano

Abstract:

In the last years, the computers have increased their capacity of calculus and networks, for the interconnection of these machines. The networks have been improved until obtaining the actual high rates of data transferring. The programs that nowadays try to take advantage of these new technologies cannot be written using the traditional techniques of programming, since most of the algorithms were designed for being executed in an only processor,in a nonconcurrent form instead of being executed concurrently ina set of processors working and communicating through a network.This paper aims to present the ongoing development of a new system for the reconfiguration of grouping of computers, taking into account these new technologies.

Keywords: Dynamic network topology, resource and task allocation, parallel computing, heterogeneous computing, dynamic reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
1361 QoS Management in the Future Internet

Authors: S. Rao, S. Khavtasi, C. Chassot, N. Van Wambeke, F. Armando, S. P. Romano, T. Castaldi

Abstract:

The talks about technological convergence had been around for almost twenty years. Today Internet made it possible. And this is not only technical evolution. The way it changed our lives reflected in variety of applications, services and technologies used in day-to-day life. Such benefits imposed even more requirements on heterogeneous and unreliable IP networks. Current paper outlines QoS management system developed in the NetQoS [1] project. It describes an overall architecture of management system for heterogeneous networks and proposes automated multi-layer QoS management. Paper focuses on the structure of the most crucial modules of the system that enable autonomous and multi-layer provisioning and dynamic adaptation.

Keywords: Automated QoS management, multi-layerprovisioning and adaptation, QoS, QoE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1360 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
1359 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
1358 A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation

Authors: Parvinder Singh Sandhu, Dalwinder Singh Salaria, Hardeep Singh

Abstract:

Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.

Keywords: Software Reusability, Software Metrics, Neural Networks, Genetic Algorithm, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1357 Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline

Authors: Alejandro Gomez Suarez, H. Srikanth Kamath

Abstract:

In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load.

Keywords: Cbq, Cbr, Nam, Ns2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1356 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1355 Learning Monte Carlo Data for Circuit Path Length

Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad

Abstract:

This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.

Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1354 Identification of Coauthors in Scientific Database

Authors: Thiago M. R Dias, Gray F. Moita

Abstract:

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.

Keywords: Extraction and data integration, Information Retrieval, Scientific Collaboration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1353 Upgrading Performance of DSR Routing Protocol in Mobile Ad Hoc Networks

Authors: Mehdi Alilou, Mehdi Dehghan

Abstract:

Routing in mobile ad hoc networks is a challenging task because nodes are free to move randomly. In DSR like all On- Demand routing algorithms, route discovery mechanism is associated with great delay. More Clearly in DSR routing protocol to send route reply packet, when current route breaks, destination seeks a new route. In this paper we try to change route selection mechanism proactively. We also define a link stability parameter in which a stability value is assigned to each link. Given this feature, destination node can estimate stability of routes and can select the best and more stable route. Therefore we can reduce the delay and jitter of sending data packets.

Keywords: DSR, MANET, proactive, routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
1352 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem

Authors: Mohammad Reza Karami Nejad

Abstract:

A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.

Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
1351 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network

Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain

Abstract:

This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.

Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311
1350 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast

Abstract:

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Keywords: Computer architecture, parallel computing, NOC, routing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1349 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: O. O. Obe, V. Balanica, E. Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: Neural Network, hypertension, data set, training set, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1348 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: Cooperative signal processing, power management, signal representation, signal approximation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1347 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
1346 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1345 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
1344 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain and how various stakeholders will interact with the system.

Keywords: Internet of Things, IoT, blockchain, data integrity, authentication, data privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 357
1343 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks

Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck

Abstract:

The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.

Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259
1342 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
1341 TBOR: Tree Based Opportunistic Routing for Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

A mobile ad hoc network (MANET) is a wireless communication network where nodes that are not within direct transmission range establish their communication via the help of other nodes to forward data. Routing protocols in MANETs are usually categorized as proactive. Tree Based Opportunistic Routing (TBOR) finds a multipath link based on maximum probability of the throughput. The simulation results show that the presented method is performed very well compared to the existing methods in terms of throughput, delay and routing overhead.

Keywords: Mobile ad hoc networks, opportunistic data forwarding, proactive Source routing, BFS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
1340 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392
1339 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

Authors: V. Venkatachalam, S. Selvan

Abstract:

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1338 Comments on He et al.’s Robust Biometric-based User Authentication Scheme for WSNs

Authors: Eun-Jun Yoon, Kee-Young Yoo

Abstract:

In order to guarantee secure communication for wireless sensor networks (WSNs), many user authentication schemes have successfully drawn researchers- attention and been studied widely. In 2012, He et al. proposed a robust biometric-based user authentication scheme for WSNs. However, this paper demonstrates that He et al.-s scheme has some drawbacks: poor reparability problem, user impersonation attack, and sensor node impersonate attack.

Keywords: Security, authentication, biometrics, poor reparability, impersonation attack, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
1337 A method of Authentication for Quantum Networks

Authors: Stefan Rass

Abstract:

Quantum cryptography offers a way of key agreement, which is unbreakable by any external adversary. Authentication is of crucial importance, as perfect secrecy is worthless if the identity of the addressee cannot be ensured before sending important information. Message authentication has been studied thoroughly, but no approach seems to be able to explicitly counter meet-in-the-middle impersonation attacks. The goal of this paper is the development of an authentication scheme being resistant against active adversaries controlling the communication channel. The scheme is built on top of a key-establishment protocol and is unconditionally secure if built upon quantum cryptographic key exchange. In general, the security is the same as for the key-agreement protocol lying underneath.

Keywords: Meet-in-the-middle attack, quantum key distribution, quantum networks, unconditionally secure authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887