Search results for: predictive maintenance machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3494

Search results for: predictive maintenance machine learning

2114 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
2113 Effects of Variations in Generator Inputs for Small Signal Stability Studies of a Three Machine Nine Bus Network

Authors: Hemalan Nambier a/l Vijiyan, Agileswari K. Ramasamy, Au Mau Teng, Syed Khaleel Ahmed

Abstract:

Small signal stability causes small perturbations in the generator that can cause instability in the power network. It is generally known that small signal stability are directly related to the generator and load properties. This paper examines the effects of generator input variations on power system oscillations for a small signal stability study. Eigenvaules and eigenvectors are used to examine the stability of the power system. The dynamic power system's mathematical model is constructed and thus calculated using load flow and small signal stability toolbox on MATLAB. The power system model is based on a 3-machine 9-bus system that was modified to suit this study. In this paper, Participation Factors are a means to gauge the effects of variation in generation with other parameters on the network are also incorporated.

Keywords: Eigen-analysis, generation modeling, participationfactor, small signal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2112 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
2111 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English

Authors: Adnan Z. Mkhelif

Abstract:

Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.

Keywords: Corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
2110 An Approach of the Inverter Voltage Used for the Linear Machine with Multi Air-Gap Structure

Authors: Pierre Kenfack

Abstract:

In this paper we present a contribution for the modelling and control of the inverter voltage of a permanent magnet linear generator with multi air-gap structure. The time domain control method is based on instant comparison of reference signals, in the form of current or voltage, with actual or measured signals. The reference current or voltage must be kept close to the actual signal with a reasonable tolerance. In this work, the time domain control method is used to control tracking signals. The performance evaluation concerns the continuation of reference signal. Simulations validate very well the tracking of reference variables (current, voltage) by measured or actual signals. All is simulated and presented under PSIM Software to show the performance and robustness of the proposed controller.

Keywords: Control, permanent magnet, linear machine, multi air-gap structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
2109 Architecting a Knowledge Theatre

Authors: David C. White

Abstract:

This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.

Keywords: Knowledge, personal, open data, visualization, learning, teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
2108 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function

Authors: Bita Tadayon, Nasser Salmasi

Abstract:

This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.

Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2107 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
2106 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit

Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari

Abstract:

Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.

Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2105 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2104 IoT Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Seani Rananga

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway, and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. Several results obtained from this study on data privacy models show that when two or more data privacy models are integrated via a fog storage gateway, we often have more secure data. Our main focus in the study is to design a framework for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, including its structure, and its interrelationships.

Keywords: IoT, fog storage, cloud storage, data analysis, data privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244
2103 A Development of Creative Instruction Model through Digital Media

Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom

Abstract:

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.

Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
2102 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining

Authors: Alexandru Epureanu, Virgil Teodor

Abstract:

One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.

Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2101 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search

Authors: Rungnapa Taithai, Anant Oonsivilai

Abstract:

This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.

Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
2100 Piezoelectric Bimorph Harvester Based on Different Lead Zirconate Titanate Materials to Enhance Energy Collection

Authors: Irene Perez-Alfaro, Nieves Murillo, Carlos Bernal, Daniel Gil-Hernandez

Abstract:

Nowadays, the increasing applicability of internet of things (IoT) systems has changed the way that the world around is perceived. The massive interconnection of systems by means of sensing, processing and communication, allows multitude of data to be at our fingertips. In this way, countless advances have been made in different fields such as personal care, predictive maintenance in industry, quality control in production processes, security, and in everything imaginable. However, all these electronic systems have in common the need to be electrically powered. In this context, batteries and wires are the most commonly used solutions, but they are not a definitive solution in some applications, because of the attainability, the serviceability, or the performance requirements. Therefore, the need arises to look for other types of solutions based on energy harvesting and long-life electronics. Energy Harvesting can be defined as the action of capturing energy from the environment and store it for an instantaneous use or later use. Among the materials capable of harvesting energy from the environment, such as thermoelectrics, electromagnetics, photovoltaics or triboelectrics, the most suitable is the piezoelectric material. The phenomenon of piezoelectricity is one of the most powerful sources for energy harvesting, ranging from a few micro wats to hundreds of wats, depending on certain factors such as material type, geometry, excitation frequency, mechanical and electrical configurations, among others. In this research work, an exhaustive study is carried out on how different types of piezoelectric materials and electrical configurations influence the maximum power that a bimorph harvester is able to extract from mechanical vibrations. A series of experiments has been carried out in which the manufactured bimorph specimens are excited under fixed inertial vibrational conditions. In addition, in order to evaluate the dependence of the maximum transferred power, different load resistors are tested. In this way, the pure active power that achieves the maximum power transfer can be approximated. In this paper, we present the design of low-cost energy harvesting solutions based on piezoelectric smart materials with tunable frequency. The results obtained show the differences in energy extraction between the PZT materials studied and their electrical configurations. The aim of this work is to gain a better understanding of the behavior of piezoelectric materials, and the design process of bimorph PZT harvesters to optimize environmental energy extraction.

Keywords: Bimorph harvesters, electrical impedance, energy harvesting, piezoelectric, smart material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
2099 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: Axial flux permanent magnet, CFD, magnet parameters, stator heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
2098 Object Speed Estimation by using Fuzzy Set

Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi

Abstract:

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Keywords: Blur Analysis, Fuzzy sets, Speed estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
2097 Modeling Biology Inspired Reactive Agents Using X-machines

Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris

Abstract:

Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.

Keywords: Biology inspired agent, formal methods, x-machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2096 Collaborative Web Platform for Rich Media Educational Material Creation

Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako

Abstract:

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.

Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
2095 Contribution for Rural Development through Training in Organic Farming

Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa

Abstract:

The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.

Keywords: Mobile-learning, organic farming, rural development, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2094 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam Ambrose Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
2093 Container Chaos: The Impact of a Casual Game on Learning and Behavior

Authors: Lori L. Scarlatos, Ryan Courtney

Abstract:

This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.

Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
2092 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles

Authors: Nabil El Kadhi, Minerva M. Bunagan

Abstract:

The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.

Keywords: Accreditation, audit, quality assurance, teaching, learning and assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
2091 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening

Authors: Chun-Lang Chang

Abstract:

According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.

Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2090 Challenges and Opportunities for Biodiversity Conservation and Sustainable Development of Ecotourism in Lalzi Bay, Durres County, Albania - Today's Science for Tomorrow's Management. A Methodology Guide with a Concrete Example by Lalzi Bay, Durres County, Albania

Authors: Arnisa Lushaj, Arvjen Lushaj, Sunitha N. Seenappa, Georgia Butina-Watson, Bashkim Lushaj, Vera Malsia, Dodë Doçi, Mercedes Hunt, Ervin Buçpapaj

Abstract:

Tourism and coastal lines are the business sectors since centuries especially in the European Nations and Albania is one such spots. However, in recent decades tourism is experienced as vulnerability of the surrounding ecological conditions of air, soil, water, land and the communities that are dependant and sharing the ecosystem among flora and fauna. Experts opine that apart from the maintenance of near-originality of ecological biodiversity the tourism rather known as ecotourism an indigenous socio-cultural maintenance of indigenous/traditional knowledge of the local people must be well cared in order to sustain on sustainable grounds. As a general tendency, growth of tourism has been affected by the deterioration in the economic conditions on one aspect and unsustainable ecological areas affected since human interventions earlier to this has negative impact on futuristic tourist spots. However, tourism in Albania as of now is 11% of GDP and coastal regions accounting to 2-4%. An amicable Mediterranean climate with 300 sunny days similar parameters of Greece and Spain throws up sustainable ecotourism in future decades provided public services namely, transportation, road safety, lodging, food availability, recreational regiments, banking accessibility are as per the World Tourism Organizations- protocols. Thus as of Albanian situation, classification of ecotourism activities to safe-guard the localities with its maintenance of ecological land, water and climate has become a paramount importance with a wanting and satisfactory options through harnessing human energy for profit and fitness of ecological flora and fauna. A check on anthropogenic wastes and their safer utilizations inclusive of agricultural and industrial operations in line with Lalzi Bay Coastal Line are of utmost importance for the reason that the Adriatic Sea Coast is the one long stretch of Albanian Lifeline. The present work is based on the methodology of the sustainable management of the same issue.

Keywords: Albania, ecotourism, Lalzi Bay, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
2089 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic

Authors: C.W. Kan

Abstract:

This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.

Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
2088 A Software of Intrusion Detection Mechanism for Virtual Platforms

Authors: Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

Security is an interesting and significance issue for popular virtual platforms, such as virtualization cluster and cloud platforms. Virtualization is the powerful technology for cloud computing services, there are a lot of benefits by using virtual machine tools which be called hypervisors, such as it can quickly deploy all kinds of virtual Operating Systems in single platform, able to control all virtual system resources effectively, cost down for system platform deployment, ability of customization, high elasticity and high reliability. However, some important security problems need to take care and resolved in virtual platforms that include terrible viruses, evil programs, illegal operations and intrusion behavior. In this paper, we present useful Intrusion Detection Mechanism (IDM) software that not only can auto to analyze all system-s operations with the accounting journal database, but also is able to monitor the system-s state for virtual platforms.

Keywords: security, cluster, cloud, virtualization, virtual machine, virus, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2087 Individual Differences and Paired Learning in Virtual Environments

Authors: Patricia M. Boechler, Heather M. Gautreau

Abstract:

In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.

Keywords: Avatar-based, virtual environment, paired learning, individual differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
2086 Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine

Authors: Ali A. Mehna, Mohmed A. Ali, Ali S. Zayed

Abstract:

A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysis

Keywords: High speed, PM motor, rotor and stator losses, finiteelement analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
2085 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861