Search results for: prediction error
752 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil
Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani
Abstract:
Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656751 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle
Authors: Santhakumar M., Asokan T.
Abstract:
This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145750 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation
Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals
Abstract:
Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.
Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027749 Investigation of Drying Kinetics of Viscose Yarn Bobbins
Authors: Ugur Akyol, Dinçer Akal, Ahmet Cihan, Kamil Kahveci
Abstract:
This study is concerned with the investigation of the suitability of several empirical and semi-empirical drying models available in the literature to define drying behavior of viscose yarn bobbins. For this purpose, firstly, experimental drying behaviour of viscose bobbins was determined on an experimental dryer setup which was designed and manufactured based on hot-air bobbin dryers used in textile industry. Afterwards, drying models considered were fitted to the experimentally obtained moisture ratios. Drying parameters were drying temperature and bobbin diameter. The fit was performed by selecting the values for constants in the models in such a way that these values make the sum of the squared differences between the experimental and the model results for moisture ratio minimum. Suitability of fitting was specified as comparing the correlation coefficient, standard error and mean square deviation. The results show that the most appropriate model in describing the drying curves of viscose bobbins is the Page model.Keywords: Drying, moisture ratio, Page model, viscose
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751748 Finite Element Modeling of Rotating Mixing of Toothpaste
Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi
Abstract:
The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.
Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257747 A Fast Adaptive Tomlinson-Harashima Precoder for Indoor Wireless Communications
Authors: M. Naresh Kumar, Abhijit Mitra, C. Ardil
Abstract:
A fast adaptive Tomlinson Harashima (T-H) precoder structure is presented for indoor wireless communications, where the channel may vary due to rotation and small movement of the mobile terminal. A frequency-selective slow fading channel which is time-invariant over a frame is assumed. In this adaptive T-H precoder, feedback coefficients are updated at the end of every uplink frame by using system identification technique for channel estimation in contrary with the conventional T-H precoding concept where the channel is estimated during the starting of the uplink frame via Wiener solution. In conventional T-H precoder it is assumed the channel is time-invariant in both uplink and downlink frames. However assuming the channel is time-invariant over only one frame instead of two, the proposed adaptive T-H precoder yields better performance than conventional T-H precoder if the channel is varied in uplink after receiving the training sequence.
Keywords: Tomlinson-Harashima precoder, Adaptive channel estimation, Indoor wireless communication, Bit error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814746 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process
Authors: Djarot B. Darmadi
Abstract:
The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo- Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.Keywords: Residual stress, ferritic steels, SSPT, coupled-TMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980745 Wavelet based Image Registration Technique for Matching Dental x-rays
Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram
Abstract:
Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762744 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients
Authors: Zarita Zainuddin, Ong Pauline, C. Ardil
Abstract:
Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989743 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach
Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh
Abstract:
This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.Keywords: Modeling, Neural Networks, Phenol, Soil media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145742 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations
Authors: Mohammed Bilal
Abstract:
The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.
Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282741 Modulation Identification Algorithm for Adaptive Demodulator in Software Defined Radios Using Wavelet Transform
Authors: P. Prakasam, M. Madheswaran
Abstract:
A generalized Digital Modulation Identification algorithm for adaptive demodulator has been developed and presented in this paper. The algorithm developed is verified using wavelet Transform and histogram computation to identify QPSK and QAM with GMSK and M–ary FSK modulations. It has been found that the histogram peaks simplifies the procedure for identification. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB and 12 dB for GMSK and QPSK respectively. When SNR is above 5 dB the throughput of the proposed algorithm is more than 97.8%. The receiver operating characteristics (ROC) has been computed to measure the performance of the proposed algorithm and the analysis shows that the probability of detection (Pd) drops rapidly when SNR is 5 dB and probability of false alarm (Pf) is smaller than 0.3. The performance of the proposed algorithm has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.
Keywords: Bit Error rate, Receiver Operating Characteristics, Software Defined Radio, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424740 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558739 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060738 Design of Digital IIR filters with the Advantages of Model Order Reduction Technique
Authors: K.Ramesh, A.Nirmalkumar, G.Gurusamy
Abstract:
In this paper, a new model order reduction phenomenon is introduced at the design stage of linear phase digital IIR filter. The complexity of a system can be reduced by adopting the model order reduction method in their design. In this paper a mixed method of model order reduction is proposed for linear IIR filter. The proposed method employs the advantages of factor division technique to derive the reduced order denominator polynomial and the reduced order numerator is obtained based on the resultant denominator polynomial. The order reduction technique is used to reduce the delay units at the design stage of IIR filter. The validity of the proposed method is illustrated with design example in frequency domain and stability is also examined with help of nyquist plot.Keywords: Error index (J), Factor division method, IIR filter, Nyquist plot, Order reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780737 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012736 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis
Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi
Abstract:
We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.
Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424735 Krylov Model Order Reduction of a Thermal Subsea Model
Authors: J. Šindler, A. Suleng, T. Jelstad Olsen, P. Bárta
Abstract:
A subsea hydrocarbon production system can undergo planned and unplanned shutdowns during the life of the field. The thermal FEA is used to simulate the cool down to verify the insulation design of the subsea equipment, but it is also used to derive an acceptable insulation design for the cold spots. The driving factors of subsea analyses require fast responding and accurate models of the equipment cool down. This paper presents cool down analysis carried out by a Krylov subspace reduction method, and compares this approach to the commonly used FEA solvers. The model considered represents a typical component of a subsea production system, a closed valve on a dead leg. The results from the Krylov reduction method exhibits the least error and requires the shortest computational time to reach the solution. These findings make the Krylov model order reduction method very suitable for the above mentioned subsea applications.
Keywords: Model order reduction, Krylov subspace, subsea production system, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320734 Transmission Performance of Millimeter Wave Multiband OFDM UWB Wireless Signal over Fiber System
Authors: M. Mohamed, X. Zhang, K. Wu, M. Elfituri, A. Legnain
Abstract:
Performance of millimeter-wave (mm-wave) multiband orthogonal frequency division multiplexing (MB-OFDM) ultrawideband (UWB) signal generation using frequency quadrupling technique and transmission over fiber is experimentally investigated. The frequency quadrupling is achived by using only one Mach- Zehnder modulator (MZM) that is biased at maximum transmission (MATB) point. At the output, a frequency quadrupling signal is obtained then sent to a second MZM. This MZM is used for MBOFDM UWB signal modulation. In this work, we demonstrate 30- GHz mm-wave wireless that carries three-bands OFDM UWB signals, and error vector magnitude (EVM) is used to analyze the transmission quality. It is found that our proposed technique leads to an improvement of 3.5 dB in EVM at 40% of local oscillator (LO) modulation with comparison to the technique using two cascaded MZMs biased at minimum transmission (MITB) point.Keywords: Optical communication, Frequency up-conversion, Mach-Zehnder modulator, millimeter wave generation, radio over fiber
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576733 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher
Authors: M. F. Haroun, T. A. Gulliver
Abstract:
In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.Keywords: Chaotic systems, image encryption, 3D Lorenz attractor, non-autonomous modulation, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217732 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725731 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation
Authors: J.Dinesh Peter
Abstract:
This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454730 Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel
Authors: Dalvir Singh, Somnath Chattopadhyaya
Abstract:
During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.Keywords: Conduction Heat Transfer, Heat Affected Zone (HAZ), Infra-Red Imaging, Numerical Method, Orthogonal Function, Plasma Arc Cutting, Separation of Variables, Temperature Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787729 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN
Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu
Abstract:
In this study, an Artificial Neural Network (ANN) analytical method has been developed for analyzing earthquake performances of the Reinforced Concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.Keywords: Artificial neural network, earthquake, performance, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664728 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training
Authors: D. Uma Devi, P. Seetha Ramaiah
Abstract:
Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655727 Performance Evaluation and Modeling of a Conical Plunging Jet Aerator
Authors: Surinder Deswal, D. V. S. Verma
Abstract:
Aeration by a plunging water jet is an energetically attractive way to effect oxygen-transfer than conventional oxygenation systems. In the present study, a new type of conical shaped plunging aeration device is fabricated to generate hollow inclined ined plunging jets (jet plunge angle of π/3 ) to investigate its oxygen transfer capacity. The results suggest that the volumetric oxygen-transfer coefficient and oxygen-transfer efficiency of the conical plunging jet aerator are competitive with other types of aeration systems. Relationships of volumetric oxygen-transfer coefficient with jet power per unit volume and jet parameters are also proposed. The suggested relationships predict the volumetric oxygentransfer coefficient within a scatter of ± 15% . Further, the application of Support Vector Machines on the experimental data revealed its utility in the prediction of volumetric oxygen-transfer coefficient and development of conical plunging jet aerators.
Keywords: Conical plunging jet, oxygen-transfer efficiency, support vector machines, volumetric oxygen-transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991726 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097725 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.
Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687724 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.
Keywords: Clogging, nozzle, numerical model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841723 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555