Search results for: predictive maintenance machine learning
2144 Learning Human-Like Color Categorization through Interaction
Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au
Abstract:
Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.Keywords: Color categorization, color learning, machinelearning, color naming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15292143 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection
Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane
Abstract:
Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.
Keywords: MOOC, Massive Open Online Courses, Online learning, E-learning, Blended learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9412142 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents
Authors: Artur Matuck, Guilherme F. Nobre
Abstract:
Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.
Keywords: Artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13132141 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools
Authors: Yogesh Aggarwal
Abstract:
The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20352140 Learning and Practicing Assessment in a Pre-service Teacher Education Program: Comparative Perspective of UK and Pakistani Universities
Authors: Malik Ghulam Behlol, Alison Fox, Faiza Masood, Sabiha Arshad
Abstract:
This paper explores the barriers to the application of learning-supportive assessment at teaching practicum while investigating the role of university teachers (UT), cooperative teachers (CT), prospective teachers (PT) and heads of the practicum schools (HPS) in the selected universities of Pakistan and the UK. It is a qualitative case study and data were collected through the lesson observation of UT in the pre-service teacher education setting and PT in practicum schools. Interviews with UT, HPS, and Focus Group Discussions with PT were conducted too. The study has concluded that as compared to the UK counterpart, PTs in Pakistan face significant barriers in applying learning-supportive assessment in the school practicum settings because of large class sizes, lack of institutionalised collaboration between universities and schools, poor modelling of the lesson, ineffective feedback practices, lower order thinking assignments, and limited opportunities to use technology in school settings.
Keywords: Learning supportive assessment, pre-service teacher education, theory-practice gap, teacher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952139 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: Road accident, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11292138 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience
Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera
Abstract:
While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19842137 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8112136 A Metametadata Architecture forPedagogic Data Description
Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah
Abstract:
This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.Keywords: Metadata, metametadata, semantic, ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142135 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems
Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar
Abstract:
Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.
Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18152134 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19902133 Extrapolation of Clinical Data from an Oral Glucose Tolerance Test Using a Support Vector Machine
Authors: Jianyin Lu, Masayoshi Seike, Wei Liu, Peihong Wu, Lihua Wang, Yihua Wu, Yasuhiro Naito, Hiromu Nakajima, Yasuhiro Kouchi
Abstract:
To extract the important physiological factors related to diabetes from an oral glucose tolerance test (OGTT) by mathematical modeling, highly informative but convenient protocols are required. Current models require a large number of samples and extended period of testing, which is not practical for daily use. The purpose of this study is to make model assessments possible even from a reduced number of samples taken over a relatively short period. For this purpose, test values were extrapolated using a support vector machine. A good correlation was found between reference and extrapolated values in evaluated 741 OGTTs. This result indicates that a reduction in the number of clinical test is possible through a computational approach.Keywords: SVM regression, OGTT, diabetes, mathematical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16142132 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.
Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31132131 Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System
Authors: A. Larabi, M. S. Boucherit
Abstract:
In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.Keywords: Asynchronous actuator, PI Regulator, adaptivemethod with reference model, Vector control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11162130 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30452129 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952128 Power System Security Assessment using Binary SVM Based Pattern Recognition
Authors: S Kalyani, K Shanti Swarup
Abstract:
Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18752127 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22612126 Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels
Authors: P. Naderi, S.M.T. Bathaee, R. Hoseinnezhad, R. Chini
Abstract:
Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.
Keywords: Hybrid, pitch, roll, regeneration, yaw.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18752125 Microencapsulation of Ascorbic Acid by Spray Drying: Influence of Process Conditions
Authors: Addion Nizori, Lan T.T. Bui, Darryl M. Small
Abstract:
Ascorbic acid (AA), commonly known as vitamin C, is essential for normal functioning of the body and maintenance of metabolic integrity. Among its various roles are as an antioxidant, a cofactor in collagen formation and other reactions, as well as reducing physical stress and maintenance of the immune system. Recent collaborative research between the Australian Defence Science and Technology Organisation (DSTO) in Scottsdale, Tasmania and RMIT University has sought to overcome the problems arising from the inherent instability of ascorbic acid during processing and storage of foods. The recent work has demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. The purpose of this current study has been focused upon the influence of spray drying conditions on the properties of encapsulated ascorbic acid. The process was carried out according to a central composite design. Independent variables were: inlet temperature (80-120° C) and feed flow rate (7-14 mL/minute). Process yield, ascorbic acid loss, moisture content, water activity and particle size distribution were analysed as responses. The results have demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. Vitamin retention, moisture content, water activity and process yield were influenced positively by inlet air temperature and negatively by feed flow rate.
Keywords: Microencapsulation, spray drying, ascorbic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44582124 A Learner-Centred or Artefact-Centred Classroom? Impact of Technology, Artefacts, and Environment on Task Processes in an English as a Foreign Language Classroom
Authors: Nobue T. Ellis
Abstract:
This preliminary study attempts to see if a learning environment influences instructor’s teaching strategies and learners’ in-class activities in a foreign language class at a university in Japan. The class under study was conducted in a computer room, while the majority of classes of the same course were offered in traditional classrooms without computers. The study also sees if the unplanned blended learning environment, enhanced, or worked against, in achieving course goals, by paying close attention to in-class artefacts, such as computers. In the macro-level analysis, the course syllabus and weekly itinerary of the course were looked at; and in the microlevel analysis, nonhuman actors in their environments were named and analyzed to see how they influenced the learners’ task processes. The result indicated that students were heavily influenced by the presence of computers, which lead them to disregard some aspects of intended learning objectives.
Keywords: Computer-assisted language learning, actor-network theory, English as a foreign language, task-based teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16102123 Complexity of Operation and Maintenance in Irrigation Network Management-A Case of the Dez Scheme in the Greater Dezful, Iran
Authors: Najaf Hedayat
Abstract:
Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.
Keywords: renewable water resources, Dez scheme, irrigationand drainage, sustainable crop production, O&M
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16212122 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays
Authors: M. Anidha, K. Premalatha
Abstract:
Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.
Keywords: Gene selection, mutual information, Fisher score, classification, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11522121 Promoting Complex Systems Learning through the use of Computer Modeling
Authors: Kamel Hashem, David Mioduser
Abstract:
This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.Keywords: Complexity, Educational technology, Learning by modeling, Mental models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15732120 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model
Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar
Abstract:
The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28162119 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8722118 Socio-Demographic Effects on Digital Libraries Preference and Use: A Case Study at Higher Learning Institutions
Authors: A. K. Razilan, A. B. Amzari, B. Ap-azli, A. R. Safawi
Abstract:
Explosion in information management and information system technology has brought dramatic changes in learning and library system environments. The use of academic digital libraries does witness the spectacular impact on academic societies’ way of performing their study in Malaysia, a country with a multi-racial people. This paper highlights a research on examining the socio-demographic differences on the preference and use of academic digital libraries as compared to physical libraries at higher learning institutions. Findings indicate that preference towards digital libraries differed between ethnicity, gender and university. However none of the socio-demographic factors is statistically significant in terms of the use of digital libraries.
Keywords: Socio-demographic, academic digital library, preference, use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14862117 Fault Detection of Broken Rotor Bars Using Stator Current Spectrum for the Direct Torque Control Induction Motor
Authors: Ridha Kechida, Arezki Menacer, Abdelhamid Benakcha
Abstract:
The numerous qualities of squirrel cage induction machines enhance their use in industry. However, various faults can occur, such as stator short-circuits and rotor failures. In this paper, we use a technique based on the spectral analysis of stator current in order to detect the fault in the machine: broken rotor bars. Thus, the number effect of the breaks has been highlighted. The effect is highlighted by considering the machine controlled by the Direct Torque Control (DTC). The key to fault detection is the development of a simplified dynamic model of a squirrel cage induction motor taking account the broken bars fault and the stator current spectrum analysis (FFT).Keywords: Rotor faults, diagnosis, induction motor, DTC, statorcurrent spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31222116 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49902115 Effects of Variations in Generator Inputs for Small Signal Stability Studies of a Three Machine Nine Bus Network
Authors: Hemalan Nambier a/l Vijiyan, Agileswari K. Ramasamy, Au Mau Teng, Syed Khaleel Ahmed
Abstract:
Small signal stability causes small perturbations in the generator that can cause instability in the power network. It is generally known that small signal stability are directly related to the generator and load properties. This paper examines the effects of generator input variations on power system oscillations for a small signal stability study. Eigenvaules and eigenvectors are used to examine the stability of the power system. The dynamic power system's mathematical model is constructed and thus calculated using load flow and small signal stability toolbox on MATLAB. The power system model is based on a 3-machine 9-bus system that was modified to suit this study. In this paper, Participation Factors are a means to gauge the effects of variation in generation with other parameters on the network are also incorporated.Keywords: Eigen-analysis, generation modeling, participationfactor, small signal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452