Search results for: Information Flows
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4235

Search results for: Information Flows

2885 Pulse Oximeter Concept for Vascular Occlusion Test

Authors: Fatanah M. Suhaimi, J. Geoffrey Chase, Christopher G. Pretty, Rodney Elliott, Geoffrey M. Shaw

Abstract:

Microcirculatory dysfunction is very common in sepsis and may results in organ failure and increased risk of death. Analyzing oxygen utilization can potentially assess microcirculation function of an individual. In this study, a modified pulse oximeter is used to extract information signals due to absorption of red (R) and infrared (IR) light. IR and R signal are related to the overall blood volume and reduced hemoglobin, respectively. Differences between these two signals thus represent the amount of oxygenated hemoglobin. Avascular occlusion test has been conducted on healthy individuals to validate the pulse oximeter concept. In this test, both R and IR signals rapidly changed according to the occlusion process. The pulse oximeter concept presented is capable of extracting valuable information to assess microcirculation condition. Implementing this concept on ICU patients has the potential to aid sepsis diagnosis and provide more accurate tracking of patient state and sepsis status.

Keywords: Microcirculation, sepsis, sepsis diagnosis, oxygen extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
2884 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
2883 Phishing Attacks Facilitated by Open-Source Intelligence

Authors: Urva Maryam

Abstract:

Private data are more often breached by clever social engineering rather than exploiting technical vulnerabilities in the systems. Complete information security requires good data safety practices to go along with technical solutions. Hackers often begin their operation by simply sending spoofed emails or fraudulent URLs to their targets and trick them into providing sensitive information such as passwords or bank account details. This technique is called phishing. Phishing attacks can be launched on email addresses, open ports and unsecured web browsers. This study uses quantitative method of research to execute phishing experiments on the participants to test their response to the phishing emails. These experiments were run on Kali Linux distribution which came bundled with multiple open-source intelligence (OSINT) tools that were used in the study. The aim of this research is to see how successful phishing attacks can be launched using OSINT and to test the response of people to spoofed emails.

Keywords: OSINT, phishing, spear phishing, email spoofing, theHarvester, Maltego.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
2882 Place Recommendation Using Location-Based Services and Real-time Social Network Data

Authors: Kanda Runapongsa Saikaew, Patcharaporn Jiranuwattanawong, Patinya Taearak

Abstract:

Currently, there is excessively growing information about places on Facebook, which is the largest social network but such information is not explicitly organized and ranked. Therefore users cannot exploit such data to recommend places conveniently and quickly. This paper proposes a Facebook application and an Android application that recommend places based on the number of check-ins of those places, the distance of those places from the current location, the number of people who like Facebook page of those places, and the number of talking about of those places. Related Facebook data is gathered via Facebook API requests. The experimental results of the developed applications show that the applications can recommend places and rank interesting places from the most to the least. We have found that the average satisfied score of the proposed Facebook application is 4.8 out of 5. The users’ satisfaction can increase by adding the app features that support personalization in terms of interests and preferences.

Keywords: Mobile computing, location-based services, recommendation system, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2881 Satisfying and Frustrating Aspects of ICT Teaching: A Comparison Based On Self-Efficacy

Authors: Deniz Deryakulu, Sener Buyukozturk, Sirin Karadeniz, Sinan Olkun

Abstract:

The purpose of this study was to determine the most satisfying and frustrating aspects of ICT (Information and Communications Technologies) teaching in Turkish schools. Another aim was to compare these aspects based-on ICT teachers- selfefficacy. Participants were 119 ICT teachers from different geographical areas of Turkey. Participants were asked to list salient satisfying and frustrating aspects of ICT teaching, and to fill out the Self-Efficacy Scale for ICT Teachers. Results showed that the high self-efficacy teachers listed more positive and negative aspects of ICT teaching then did the low self-efficacy teachers. The satisfying aspects of ICT teaching were the dynamic nature of ICT subject, higher student interest, having opportunity to help other subject teachers, and lecturing in well-equipped labs, whereas the most frequently cited frustrating aspects of ICT teaching were ICT-related extra works of schools and colleagues, shortages of hardware and technical problems, indifferent students, insufficient teaching time, and the status of ICT subject in school curriculum. This information could be useful in redesigning ICT teachers- roles and responsibilities as well as job environment in schools.

Keywords: ICT teachers, frustrating aspects of ICT teaching, satisfying aspects of ICT teaching, teacher self-efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
2880 Real-Time Land Use and Land Information System in Homagama Divisional Secretariat Division

Authors: Kumara Jayapathma J. H. M. S. S., Dampegama S. D. P. J.

Abstract:

Lands are valuable & limited resource which constantly changes with the growth of the population. An efficient and good land management system is essential to avoid conflicts associated with lands. This paper aims to design the prototype model of a Mobile GIS Land use and Land Information System in real-time. Homagama Divisional Secretariat Division situated in the western province of Sri Lanka was selected as the study area. The prototype model was developed after reviewing related literature. The methodology was consisted of designing and modeling the prototype model into an application running on a mobile platform. The system architecture mainly consists of a Google mapping app for real-time updates with firebase support tools. Thereby, the method of implementation consists of front-end and back-end components. Software tools used in designing applications are Android Studio with JAVA based on GeoJSON File structure. Android Studio with JAVA in GeoJSON File Synchronize to Firebase was found to be the perfect mobile solution for continuously updating Land use and Land Information System (LIS) in real-time in the present scenario. The mobile-based land use and LIS developed in this study are multiple user applications catering to different hierarchy levels such as basic users, supervisory managers, and database administrators. The benefits of this mobile mapping application will help public sector field officers with non-GIS expertise to overcome the land use planning challenges with land use updated in real-time.

Keywords: Android, Firebase, GeoJSON, GIS, JAVA, JSON, LIS, mobile GIS, real-time, REST API.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
2879 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2878 Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels

Authors: Marwa Ben Abdessalem, Amin Zribi, Ammar Bouallègue

Abstract:

In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel.

Keywords: AWGN channel, belief propagation, joint source channel coding, LDPC codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
2877 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
2876 Direct Growth Rates of the Information Model for Traffic at the Service of Sustainable Development of Tourism in Dubrovacko-Neretvanska County 2014-2020

Authors: V. Viduĉić, J. Žanić Mikuliĉić, M. Raĉić, K. Sladojević

Abstract:

The research presented in this paper has been focused on analysing the impact of traffic on the sustainable development of tourism in Croatia's Dubrovacko-Neretvanska County by the year 2020, based on the figures and trends reported in 2014 and using the relevant variables that characterise the synergy of traffic and tourism in, speaking from the geographic viewpoint, the most problematic county in the Republic of Croatia. The basic hypothesis has been confirmed through scientifically obtained research results, through the quantification of the model's variables and the direct growth rates of the designed model. On the basis of scientific insights into the sustainable development of traffic and tourism in Dubrovacko- Neretvanska County, it is possible to propose a new information model for traffic at the service of the sustainable development of tourism in the County for the period 2014-2020.

Keywords: Environment protection, hotel industry, private sector, quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
2875 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: Decision tree, classification, data mining, scholarship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
2874 Digital Geomatics Trends for Production and Updating Topographic Map by Using Digital Generalization Procedures

Authors: O. Z. Jasim

Abstract:

An accuracy digital map must satisfy the users for two main requirements, first, map must be visually readable and second, all the map elements must be in a good representation. These two requirements hold especially true for map generalization which aims at simplifying the representation of cartographic data. Different scales of maps are very important for any decision in any maps with different scales such as master plan and all the infrastructures maps in civil engineering. Cartographer cannot project the data onto a piece of paper, but he has to worry about its readability. The map layout of any geodatabase is very important, this layout is help to read, analyze or extract information from the map. There are many principles and guidelines of generalization that can be find in the cartographic literature. A manual reduction method for generalization depends on experience of map maker and therefore produces incompatible results. Digital generalization, rooted from conventional cartography, has become an increasing concern in both Geographic Information System (GIS) and mapping fields. This project is intended to review the state of the art of the new technology and help to understand the needs and plans for the implementation of digital generalization capability as well as increase the knowledge of production topographic maps.

Keywords: Cartography, digital generalization, mapping, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
2873 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes

Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu

Abstract:

In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.

Keywords: Industrial data matrix code, Hough transform, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
2872 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
2871 Confidence Intervals for the Coefficients of Variation with Bounded Parameters

Authors: Jeerapa Sappakitkamjorn, Sa-aat Niwitpong

Abstract:

In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.  

Keywords: Bounded parameters, coefficient of variation, confidence interval, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4227
2870 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: Cascading hazards, multi-hazard, risk assessment, risk reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
2869 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: Cognitive decline, functional connectivity, MCI, MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
2868 The Impact of Information and Communication Technology in Education: Opportunities and Challenges

Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif

Abstract:

The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.

Keywords: Information and communication technology, ICT, education, ICT infrastructure, teacher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3880
2867 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
2866 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data

Authors: Chi-Lun Liu

Abstract:

Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.

Keywords: Knowledge representation, reasoning, ontology, class diagram, software engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
2865 The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach

Authors: A. B. Adehor, P. R. Burrell

Abstract:

The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.

Keywords: Differential diagnosis, Health Information System(HIS), Integrated Management of Child Illnesses (IMCI), Malaria andTyphoid fever.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
2864 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: Target localization, ship-borne electro-optical stabilized platform, unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114
2863 Analysis of Lightweight Register Hardware Threat

Authors: Yang Luo, Beibei Wang

Abstract:

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Keywords: Side-channel analysis, hardware threat, register transfer level, dynamic power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
2862 Filtering and Reconstruction System for Gray Forensic Images

Authors: Ahd Aljarf, Saad Amin

Abstract:

Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.

Keywords: Image Filtering, Image Reconstruction, Image Processing, Forensic Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
2861 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
2860 Momentum Accounting in Public Management: A Case Study in a Brazilian Navy-s Services Provider Military Organization

Authors: Rodrigo Barreiros Leal, Aracéli Cristina de Sousa Ferreira

Abstract:

This study examines the possibility to apply the theory of multidimensional accounting (momentum accounting) in a Brazilian Navy-s Services Provider Military Organization (Organização Militar Prestadora de Serviços - OMPS). In general, the core of the said theory is the fact that Accounting does not recognize the inertia of transactions occurring in an entity, and that occur repeatedly in some cases, regardless of the implementation of new actions by its managers. The study evaluates the possibility of greater use of information recorded in the financial statements of the unit of analysis, within the strategic decisions of the organization. As a research strategy, we adopted the case study. The results infer that it is possible to use the theory in the context of a multidimensional OMPS, promoting useful information for decision-making and thereby contributing to the strengthening of the necessary alignment of its administration with the current desires of the Brazilian society.

Keywords: Multidimensional Accounting, Public Management, Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
2859 Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable

Authors: Tatsuya Sakoda, Yuta Nakamura, Junichiro Kitajima, Masaki Sugiura, Satoshi Kurihara, Kenji Baba, Koichiro Kaneko, Takayoshi Yarimitsu

Abstract:

An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.

Keywords: acoustic emission, creeping discharge, partial discharge, XLPE cable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2858 Users’ Information Disclosure Determinants in Social Networking Sites: A Systematic Literature Review

Authors: Wajdan Al Malwi, Karen Renaud, Lewis Mackenzie

Abstract:

The privacy paradox describes a phenomenon whereby there is no connection between stated privacy concerns and privacy behaviours. We need to understand the underlying reasons for this paradox if we are to help users to preserve their privacy more effectively. In particular, the Social Networking System (SNS) domain offers a rich area of investigation due to the risks of unwise information disclosure decisions. Our study thus aims to untangle the complicated nature and underlying mechanisms of online privacy-related decisions in SNSs. In this paper, we report on the findings of a Systematic Literature Review (SLR) that revealed a number of factors that are likely to influence online privacy decisions. Our deductive analysis approach was informed by Communicative Privacy Management (CPM) theory. We uncovered a lack of clarity around privacy attitudes and their link to behaviours, which makes it challenging to design privacy-protecting SNS platforms and to craft legislation to ensure that users’ privacy is preserved.

Keywords: Privacy paradox, self-disclosure, privacy attitude, privacy behaviour, social networking sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
2857 One-Class Support Vector Machines for Aerial Images Segmentation

Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen

Abstract:

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
2856 Developing Online Bookstore to Facilitate Manual Process – UTP Case Study

Authors: Emelia Akashah P.A, Sharifah Nadiah S.A

Abstract:

Knowledge sharing enables the information or knowledge to be transmitted from one source to another. This paper demonstrates the needs of having the online book catalogue which can be used to facilitate disseminating information on textbook used in the university. This project is aimed to give access to the students and lecturers to the list of books in the bookstore and at the same time to allow book reviewing without having to visit the bookstore physically. Research is carried out according to the boundaries which accounts to current process of new book purchasing, current system used by the bookstore and current process the lecturers go through for reviewing textbooks. The questionnaire is used to gather the requirements and it is distributed to 100 students and 40 lecturers. This project has enabled the improvement of a manual process to be carried out automatically, through a web based platform. It is shown based on the user acceptance survey carried out that target groups found that this web service is feasible to be implemented in Universiti Teknologi PETRONAS (UTP), and they have shown positive signs of interest in utilizing it in the future.

Keywords: bookstore, knowledge sharing, online bookcatalogue, textbook

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4250