Search results for: Electronic learning
1242 Teachers Learning about Sustainability while Co-Constructing Digital Games
Authors: M. Daskolia, C. Kynigos, N. Yiannoutsou
Abstract:
Teaching and learning about sustainability is a pedagogical endeavour with various innate difficulties and increased demands. Higher education has a dual role to play in addressing this challenge: to identify and explore innovative approaches and tools for addressing the complex and value-laden nature of sustainability in more meaningful ways, and to help teachers to integrate these approaches into their practice through appropriate professional development programs. The study reported here was designed and carried out within the context of a Masters course in Environmental Education. Eight teachers were collaboratively engaged in reconstructing a digital game microworld which was deliberately designed by the researchers to be questioned and evoke critical discussion on the idea of ‘sustainable city’. The study was based on the design-based research method. The findings indicate that the teachers’ involvement in processes of co-constructing the microworld initiated discussion and reflection upon the concepts of sustainability and sustainable lifestyles.
Keywords: sustainability, sustainable lifestyles, constructionism, environmental education, digital games, teacher training
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041241 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives
Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain
Abstract:
Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.
Keywords: Z-Source Inverter, total harmonic distortion, direct torque control, field orientation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10331240 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17391239 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn
Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew
Abstract:
The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval and loving to learn. Data in the present study came from 680 university students enrolled in various programmes in Malaysia. The Malay version of the questionnaire supported a similar four factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement to the questions is needed to strengthen the correlations between the two questionnaires.Keywords: Student learning, learner awareness, instrument validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591238 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711237 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter
Authors: Ali Z a'fari
Abstract:
Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911236 Towards Better Quality in Healthcare and Operations Management: A Developmental Literature Review
Authors: Towards Better Quality in Healthcare, Operations Management: A Developmental Literature Review
Abstract:
This work presents the various perspectives, dimensions, components and definitions given to quality in the operations management (OM) and healthcare services (HCS) literature in time, highlighting gaps and learning opportunities between the two disciplines through a thorough search into their rich and distinct body of knowledge. Greater and new insights about the general nature of quality are obtained with findings such as in OM, quality has been approached in six fairly distinct paradigms (excellence, value, conformity to specifications, attributes, satisfaction and meeting or exceeding customer expectations), whereas in HCS, two approaches are prominent (Donabedian’s structure, process and outcomes model and Lohr and Schroeder’s circumscribed definition). The two disciplines views on quality seem to have progressed much in parallel with little cross-learning from each other. This work then proposes an encompassing definition of quality as a lever and suggests further research and development avenues for a better use of the concept of quality by academics and practitioners alike toward the goals of greater organizational performance and improved management in healthcare and possibly other service domains.
Keywords: Healthcare, management, operations, quality, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731235 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.
Keywords: Multiple intelligences, role play, performance assessment, formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401234 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181233 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971232 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451231 Mimicking Morphogenesis for Robust Behaviour of Cellular Architectures
Authors: David Jones, Richard McWilliam, Alan Purvis
Abstract:
Morphogenesis is the process that underpins the selforganised development and regeneration of biological systems. The ability to mimick morphogenesis in artificial systems has great potential for many engineering applications, including production of biological tissue, design of robust electronic systems and the co-ordination of parallel computing. Previous attempts to mimick these complex dynamics within artificial systems have relied upon the use of evolutionary algorithms that have limited their size and complexity. This paper will present some insight into the underlying dynamics of morphogenesis, then show how to, without the assistance of evolutionary algorithms, design cellular architectures that converge to complex patterns.
Keywords: Morphogenesis, regeneration, robustness, convergence, cellular automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901230 RP-ADAS: Relative Position-Advanced Drive Assistant System based on VANET (GNSS)
Authors: Hun-Jung Lim, Tai-Myoung Chung
Abstract:
Few decades ago, electronic and sensor technologies are merged into vehicles as the Advanced Driver Assistance System(ADAS). However, sensor-based ADASs have limitations about weather interference and a line-of-sight nature problem. In our project, we investigate a Relative Position based ADAS(RP-ADAS). We divide the RP-ADAS into four main research areas: GNSS, VANET, Security/Privacy, and Application. In this paper, we research the GNSS technologies and determine the most appropriate one. With the performance evaluation, we figure out that the C/A code based GPS technologies are inappropriate for 'which lane-level' application. However, they can be used as a 'which road-level' application.Keywords: Relative Positioning, VANET, GNSS, ADAS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23901229 The Pedagogical Integration of Digital Technologies in Initial Teacher Training
Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos
Abstract:
The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.
Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5991228 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modeling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modeling tool and Means End Analysis, that adopts primitive concepts for modeling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.
Keywords: Adaptive Courseware, Early Requirement Engineering, Means End Analysis, Organizational Modeling, Requirement Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16471227 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18271226 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor
Authors: D. Oshinubi, M. Rocznik, K. Dostert
Abstract:
The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15051225 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.
Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6701224 Multiple Intelligence Theory with a View to Designing a Classroom for the Future
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology is not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen-year-old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.
Keywords: Multiple Intelligences, role play, performance assessment, formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461223 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge
Authors: Souad Demigha
Abstract:
The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.
Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681222 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study
Authors: Jurij Tasinkiewicz
Abstract:
The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051221 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo
Authors: Miika Toivanen, Jouko Lampinen
Abstract:
This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811220 Study the Effect of Soft Errors on FlexRay-Based Automotive Systems
Authors: Yung-Yuan Chen, Kuen-Long Leu
Abstract:
FlexRay, as a communication protocol for automotive control systems, is developed to fulfill the increasing demand on the electronic control units for implementing systems with higher safety and more comfort. In this work, we study the impact of radiation-induced soft errors on FlexRay-based steer-by-wire system. We injected the soft errors into general purpose register set of FlexRay nodes to identify the most critical registers, the failure modes of the steer-by-wire system, and measure the probability distribution of failure modes when an error occurs in the register file.Keywords: Soft errors, FlexRay, fault injection, steer-by-wirer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911219 Mathematical Modeling of Current Harmonics Caused by Personal Computers
Authors: Rana Abdul Jabbar Khan, Muhammad Akmal
Abstract:
Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25221218 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6641217 Delineating Students’ Speaking Anxieties and Assessment Gaps in Online Speech Performances
Authors: Mary Jane B. Suarez
Abstract:
Speech anxiety is innumerable in any traditional communication classes especially for ESL students. The speech anxiety intensifies when communication skills assessments have taken its toll in an online mode of learning due to the perils of the COVID-19 virus. Teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn various speaking skills amidst the pandemic. This mixed method study determined the factors that affected the public speaking skills of students in online performances, delineated the assessment gaps in assessing speaking skills in an online setup, and recommended ways to address students’ speech anxieties. Using convergent parallel design, quantitative data were gathered by examining the desired learning competencies of the English course including a review of the teacher’s class record to analyze how students’ performances reflected a significantly high level of anxiety in online speech delivery. Focus group discussion was also conducted for qualitative data describing students’ public speaking anxiety and assessment gaps. Results showed a significantly high level of students’ speech anxiety affected by time constraints, use of technology, lack of audience response, being conscious of making mistakes, and the use of English as a second language. The study presented recommendations to redesign curricular assessments of English teachers and to have a robust diagnosis of students’ speaking anxiety to better cater to the needs of learners in attempt to bridge any gaps in cultivating public speaking skills of students as educational institutions segue from the pandemic to the post-pandemic milieu.
Keywords: Blended learning, communication skills assessment, online speech delivery, public speaking anxiety, speech anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761216 Computer Assisted Learning in a Less Resource Region
Authors: Hamidullah Sokout, Samiullah Paracha, Abdul Rashid Ahmadi
Abstract:
Passing the entrance exam to a university is a major step in one's life. University entrance exam commonly known as Kankor is the nationwide entrance exam in Afghanistan. This examination is prerequisite for all public and private higher education institutions at undergraduate level. It is usually taken by students who are graduated from high schools. In this paper, we reflect the major educational school graduates issues and propose ICT-based test preparation environment, known as ‘Online Kankor Exam Prep System’ to give students the tools to help them pass the university entrance exam on the first try. The system is based on Intelligent Tutoring System (ITS), which introduced an essential package of educational technology for learners that features: (I) exam-focused questions and content; (ii) self-assessment environment; and (iii) test preparation strategies in order to help students to acquire the necessary skills in their carrier and keep them up-to-date with instruction.
Keywords: Web-based test prep systems, Learner-centered design, E-Learning, Intelligent tutoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511215 Open Source Software in Higher Education: Oman SQU Case Study
Authors: Amal S. Al-Badi, Ali H. Al-Badi
Abstract:
Many organizations are opting to adopt Open Source Software (OSS) as it is the current trend to rely on each other rather than on companies (Software vendors). It is a clear shift from organizations to individuals, the concept being to rely on collective participation rather than companies/vendors.
The main objectives of this research are 1) to identify the current level of OSS usage in Sultan Qaboos University; 2) to identify the potential benefits of using OSS in educational institutes; 3) to identify the OSS applications that are most likely to be used within an educational institute; 4) to identify the existing and potential barriers to the successful adoption of OSS in education.
To achieve these objectives a two-stage research method was conducted. First a rigorous literature review of previously published material was performed (interpretive/descriptive approach), and then a set of interviews were conducted with the IT professionals at Sultan Qaboos University in Oman in order to explore the extent and nature of their usage of OSS.
Keywords: Open source software; social software, e-learning 2.0, Web 2.0, connectivism, personal learning environment (PLE), OpenID, OpenSocial and OpenCourseWare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36441214 Machine Learning Methods for Flood Hazard Mapping
Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto
Abstract:
This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.
Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7231213 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.
Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3847