Search results for: Relevant visual data
7115 DCBOR: A Density Clustering Based on Outlier Removal
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. We present an enhanced version of the well known single link clustering algorithm. We will refer to this algorithm as DCBOR. The proposed algorithm alleviates the chain effect by removing the outliers from the given dataset. So this algorithm provides outlier detection and data clustering simultaneously. This algorithm does not need to update the distance matrix, since the algorithm depends on merging the most k-nearest objects in one step and the cluster continues grow as long as possible under specified condition. So the algorithm consists of two phases; at the first phase, it removes the outliers from the input dataset. At the second phase, it performs the clustering process. This algorithm discovers clusters of different shapes, sizes, densities and requires only one input parameter; this parameter represents a threshold for outlier points. The value of the input parameter is ranging from 0 to 1. The algorithm supports the user in determining an appropriate value for it. We have tested this algorithm on different datasets contain outlier and connecting clusters by chain of density points, and the algorithm discovers the correct clusters. The results of our experiments demonstrate the effectiveness and the efficiency of DCBOR.Keywords: Data Clustering, Clustering Algorithms, Handling Noise, Arbitrary Shape of Clusters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19327114 Alternative to M-Estimates in Multisensor Data Fusion
Authors: Nga-Viet Nguyen, Georgy Shevlyakov, Vladimir Shin
Abstract:
To solve the problem of multisensor data fusion under non-Gaussian channel noise. The advanced M-estimates are known to be robust solution while trading off some accuracy. In order to improve the estimation accuracy while still maintaining the equivalent robustness, a two-stage robust fusion algorithm is proposed using preliminary rejection of outliers then an optimal linear fusion. The numerical experiments show that the proposed algorithm is equivalent to the M-estimates in the case of uncorrelated local estimates and significantly outperforms the M-estimates when local estimates are correlated.Keywords: Data fusion, estimation, robustness, M-estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18317113 Data Structures and Algorithms of Intelligent Web-Based System for Modular Design
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
In recent years, new product development became more and more competitive and globalized, and the designing phase is critical for the product success. The concept of modularity can provide the necessary foundation for organizations to design products that can respond rapidly to market needs. The paper describes data structures and algorithms of intelligent Web-based system for modular design taking into account modules compatibility relationship and given design requirements. The system intelligence is realized by developed algorithms for choice of modules reflecting all system restrictions and requirements. The proposed data structure and algorithms are illustrated by case study of personal computer configuration. The applicability of the proposed approach is tested through a prototype of Web-based system.
Keywords: Data structures, algorithms, intelligent web-based system, modular design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18147112 Dignity and Suffering: Reading of Human Rights in Untouchable by Anand
Authors: Norah A. Elgibreen
Abstract:
Cultural stories are political. They register cultural phenomena and their relations with the world and society in term of their existence, function, characteristics by using different context. This paper will provide a new way of rethinking which will help us to rethink the relationship between fiction and politics. It discusses the theme of human rights and it shows the relevance between art and politics by studying the civil society through a literary framework. Reasons to establish a relationship between fiction and politics are the relevant themes and universal issues among the two disciplines. Both disciplines are sets of views and ideas formulated by the human mind to explain political or cultural phenomenon. Other reasons are the complexity and depth of the author-s vision, and the need to explain the violations of human rights in a more active structure which can relate to emotional and social existence.Keywords: dignity, human rights, politics and literature, Untouchable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33027111 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems
Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel
Abstract:
Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.
Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18337110 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification
Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff
Abstract:
The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24807109 Detailed Mapping of Pyroclastic Flow Deposits by SAR Data Processing for an Active Volcano in the Torrid Zone
Authors: Asep Saepuloh, Katsuaki Koike
Abstract:
Field mapping activity for an active volcano mainly in the Torrid Zone is usually hampered by several problems such as steep terrain and bad atmosphere conditions. In this paper we present a simple solution for such problem by a combination Synthetic Aperture Radar (SAR) and geostatistical methods. By this combination, we could reduce the speckle effect from the SAR data and then estimate roughness distribution of the pyroclastic flow deposits. The main purpose of this study is to detect spatial distribution of new pyroclastic flow deposits termed as P-zone accurately using the β°data from two RADARSAT-1 SAR level-0 data. Single scene of Hyperion data and field observation were used for cross-validation of the SAR results. Mt. Merapi in central Java, Indonesia, was chosen as a study site and the eruptions in May-June 2006 were examined. The P-zones were found in the western and southern flanks. The area size and the longest flow distance were calculated as 2.3 km2 and 6.8 km, respectively. The grain size variation of the P-zone was mapped in detail from fine to coarse deposits regarding the C-band wavelength of 5.6 cm.Keywords: Geostatistical Method, Mt. Merapi, Pyroclastic, RADARSAT-1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13067108 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.
Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13777107 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization
Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke
Abstract:
The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.
Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20247106 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: Connected-car, data modeling, route planning, navigation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19627105 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30747104 Array Data Transformation for Source Code Obfuscation
Authors: S. Praveen, P. Sojan Lal
Abstract:
Obfuscation is a low cost software protection methodology to avoid reverse engineering and re engineering of applications. Source code obfuscation aims in obscuring the source code to hide the functionality of the codes. This paper proposes an Array data transformation in order to obfuscate the source code which uses arrays. The applications using the proposed data structures force the programmer to obscure the logic manually. It makes the developed obscured codes hard to reverse engineer and also protects the functionality of the codes.Keywords: Reverse Engineering, Source Code Obfuscation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20357103 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.Keywords: Data mining, association rule, fuzzy frequent patterngrowth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17997102 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20527101 Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach
Authors: Donna R. Tabangin, Jacqueline C. Flores, Nelson F. Emperador
Abstract:
Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.Keywords: Crime mapping, data mining, environmental design, geographic visualization, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26217100 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex
Authors: Li Zhu, Binghua Wang, Yong Sun
Abstract:
China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.
Keywords: Agritourism complex, energy planning, energy demand simulation, hierarchical structure model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8937099 Serious Game for Autism Children: Review of Literature
Authors: Helmi Adly Mohd Noor, Faaizah Shahbodin, Naim Che Pee
Abstract:
Autism Spectrum Disorder (ASD) is a pervasive developmental disorder which affects individuals with varying degrees of impairment. Currently, there has been ample research done in serious game for autism children. Although serious games are traditionally associated with software developments, developing them in the autism field involves studying the associated technology and paying attention to aspects related to interaction with the game. Serious Games for autism cover matters related to education, therapy for communication, psychomotor treatment and social behavior enhancement. In this paper, a systematic review sets out the lines of development and research currently being conducted into serious games which pursue some form of benefit in the field of autism. This paper includes a literature review of relevant serious game developments since in year 2007 and examines new trends.
Keywords: Serious Game, Autism, Education, Therapy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74667098 Constitutional Complaint as an Instrument of Fulfilling the Worker ׳s Rights in Croatian Legal System
Authors: Dragana Bjelić, Mirela Mezak Stastny
Abstract:
This paper begins with formal defining of human rights and freedoms, and the basic document regarding the said subject is undoubtedly French Declaration of the Rights of Man and of the Citizen from 789. This paper furthermore parses legal sources relevant for the workers' rights in legal system of the Republic of Croatia, international contracts and the Labour Act, which is also a master bill regarding workers' rights The authors are also dealing with issues of Constitutional Court of the Republic of Croatia and its' position in judicial system of the Republic of Croatia, as well as with the specifics of Constitutional Complaint, and the crucial part of the paper is based on the research conducted with an aim to determine implementation of rights and liberties guaranteed by the articles 54. and 55. of the Constitution of the Republic of Croatia by means of Constitutional Complaint.
Keywords: a right to work, a freedom of work, Constitutional Court of Republic of Croatia, Constitutional Complaint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15637097 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15147096 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.
Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance empirical formula, typical SQL query tasks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8367095 Analysis of Palm Perspiration Effect with SVM for Diabetes in People
Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas
Abstract:
In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.
Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19457094 Intention Recognition using a Graph Representation
Authors: So-Jeong Youn, Kyung-Whan Oh
Abstract:
The human friendly interaction is the key function of a human-centered system. Over the years, it has received much attention to develop the convenient interaction through intention recognition. Intention recognition processes multimodal inputs including speech, face images, and body gestures. In this paper, we suggest a novel approach of intention recognition using a graph representation called Intention Graph. A concept of valid intention is proposed, as a target of intention recognition. Our approach has two phases: goal recognition phase and intention recognition phase. In the goal recognition phase, we generate an action graph based on the observed actions, and then the candidate goals and their plans are recognized. In the intention recognition phase, the intention is recognized with relevant goals and user profile. We show that the algorithm has polynomial time complexity. The intention graph is applied to a simple briefcase domain to test our model.Keywords: Intention recognition, intention, graph, HCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33957093 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.
Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12027092 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks
Authors: Minsoo Lee, Julee Choi, Sookyung Song
Abstract:
The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15397091 Real Time Data Communication with FlightGear Using Simulink over a UDP Protocol
Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique
Abstract:
Simulation and modelling of Unmanned Aerial Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade, as next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.
Keywords: aerospace, flight control, FlightGear, communication, Simulink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11467090 Comparing Data Analysis, Communication and Information Technologies Expertise Levels in Undergraduate Psychology Students
Authors: Ana Cázares
Abstract:
Aims for this study: first, to compare the expertise level in data analysis, communication and information technologies in undergraduate psychology students. Second, to verify the factor structure of E-ETICA (Escala de Experticia en Tecnologias de la Informacion, la Comunicacion y el Análisis or Data Analysis, Communication and Information'Expertise Scale) which had shown an excellent internal consistency (α= 0.92) as well as a simple factor structure. Three factors, Complex, Basic Information and Communications Technologies and E-Searching and Download Abilities, explains 63% of variance. In the present study, 260 students (119 juniors and 141 seniors) were asked to respond to ETICA (16 items Likert scale of five points 1: null domain to 5: total domain). The results show that both junior and senior students report having very similar expertise level; however, E-ETICA presents a different factor structure for juniors and four factors explained also 63% of variance: Information E-Searching, Download and Process; Data analysis; Organization; and Communication technologies.Keywords: Data analysis, Information, Communications Technologies, Expertise'Levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12857089 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles
Authors: Stephen Akuma, Timothy Ndera
Abstract:
Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.
Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8467088 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7127087 Integration of Image and Patient Data, Software and International Coding Systems for Use in a Mammography Research Project
Authors: V. Balanica, W. I. D. Rae, M. Caramihai, S. Acho, C. P. Herbst
Abstract:
Mammographic images and data analysis to facilitate modelling or computer aided diagnostic (CAD) software development should best be done using a common database that can handle various mammographic image file formats and relate these to other patient information. This would optimize the use of the data as both primary reporting and enhanced information extraction of research data could be performed from the single dataset. One desired improvement is the integration of DICOM file header information into the database, as an efficient and reliable source of supplementary patient information intrinsically available in the images. The purpose of this paper was to design a suitable database to link and integrate different types of image files and gather common information that can be further used for research purposes. An interface was developed for accessing, adding, updating, modifying and extracting data from the common database, enhancing the future possible application of the data in CAD processing. Technically, future developments envisaged include the creation of an advanced search function to selects image files based on descriptor combinations. Results can be further used for specific CAD processing and other research. Design of a user friendly configuration utility for importing of the required fields from the DICOM files must be done.Keywords: Database Integration, Mammogram Classification, Tumour Classification, Computer Aided Diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19447086 Demographics Are Not Enough: Targeting and Segmentation of Anti-Obesity Campaigns in Mexico
Authors: D. Wrzecionkowska
Abstract:
Mass media campaigns against obesity are often designed to impact large audiences. This usually means that their audience is defined based on general demographic characteristics like age, gender, occupation etc., not taking into account psychographics like behavior, motivations, wants, etc. Using psychographics, as the base for the audience segmentation, is a common practice in case of successful campaigns, as it allows developing more relevant messages. It also serves a purpose of identifying key segments, those that generate the best return on investment. For a health campaign, that would be segments that have the best chance of being converted into healthy lifestyle at the lowest cost. This paper presents the limitations of the demographic targeting, based on the findings from the reception study of IMSS (Mexican Social Security Institute) antiobesity TV commercials and proposes mothers as the first level of segmentation, in the process of identifying the key segment for these campaigns.Keywords: Anti-obesity campaigns, mothers, segmentation, targeting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070