Search results for: Heat exchanger cycle
609 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation
Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee
Abstract:
This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613608 Emergency Health Management at a South African University
Authors: R. Tandlich, S. Hoossein, K. A. Tagwira, M. M. Marais, T. A. Ludwig, R. P. Chidziva, M. N. Munodawafa, W. M. Wrench
Abstract:
Response to the public health-related emergencies is analysed here for a rural university in South Africa. The structure of the designated emergency plan covers all the phases of the disaster management cycle. The plan contains elements of the vulnerability model and the technocratic model of emergency management. The response structures are vertically and horizontally integrated, while the planning contains elements of scenario-based and functional planning. The available number of medical professionals at the Rhodes University, along with the medical insurance rates, makes the staff and students potentially more medically vulnerable than the South African population. The main improvements of the emergency management are required in the tornado response and the information dissemination during health emergencies. The latter should involve the increased use of social media and e-mails, following the Taylor model of communication. Infrastructure must be improved in the telecommunication sector in the face of unpredictable electricity outages.
Keywords: Public health, Rural university, Taylor model of communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129607 Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)
Authors: Sahilu Wendeson Sahilu, Wan Fatimah Wan Ahmad, Nazleeni Samiha Haron
Abstract:
Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.Keywords: ADDIE, Conventional learning, ISD, J2ME, Mlearning, Quasi Experiment, Wireless Technology, XML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718606 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469605 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas
Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen
Abstract:
In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.
Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544604 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes
Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul
Abstract:
The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.
Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438603 Target and Kaizen Costing
Authors: Alireza Azimi Sani , Mahdi Allahverdizadeh
Abstract:
increased competition and increased costs of designing made it important for the firms to identify the right products and the right methods for manufacturing the products. Firms should focus on customers and identify customer demands directly to design the right products. Several management methods and techniques that are currently available improve one or more functions or processes in an industry and do not take the complete product life cycle into consideration. On the other hand target costing is a method / philosophy that takes financial, manufacturing and customer aspects into consideration during designing phase and helps firms in making product design decisions to increase the profit / value of the company. It uses various techniques to identify customer demands, to decrease costs of manufacturing and finally to achieve strategic goals. Target Costing forms an integral part of total product design / redesign based on strategic plans.Keywords: Target Costing, Target Cost Management, Cost Management, Activity Based Costing, New product design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10168602 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process
Authors: Abioye A. Oyenuga, Rao Bhamidimarri
Abstract:
Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper and plasterboard. Data obtained from demolition specialists and contractors are considered and evaluated. The research paper found that construction material recovery process fully incorporate a 3R’s principle contributing to saving energy and natural resources. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.
Keywords: Construction & Demolition Waste (C&DW), 3R concept, Recycling, Reuse, Life-Cycle Assessment (LCA), Waste Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5098601 Influence of Vortex Generator on Flow Behavior of Air Stream
Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan
Abstract:
This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.
Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225600 Passive Cooling of Building by using Solar Chimney
Authors: Insaf Mehani, N. Settou
Abstract:
Natural ventilation is an important means to improve indoor thermal comfort and reduce the energy consumption. A solar chimney system is an enhancing natural draft device, which uses solar radiation to heat the air inside the chimney, thereby converting the thermal energy into kinetic energy. The present study considered some parameters such as chimney width and solar intensity, which were believed to have a significant effect on space ventilation. Fluent CFD software was used to predict buoyant air flow and flow rates in the cavities. The results were compared with available published experimental and theoretical data from the literature. There was an acceptable trend match between the present results and the published data for the room air change per hour, ACH. Further, it was noticed that the solar intensity has a more significant effect on ACH.
Keywords: Solar chimney, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4409599 Topology Optimization of Aircraft Fuselage Structure
Authors: Muniyasamy Kalanchiam, Baskar Mannai
Abstract:
Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094598 Multiple Intelligence Theory with a View to Designing a Classroom for the Future
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology is not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen-year-old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.
Keywords: Multiple Intelligences, role play, performance assessment, formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547597 Synthesis of Sterile and Pyrogen Free Biogenic Magnetic Nanoparticles: Biotechnological Potential of Magnetotactic Bacteria for Production of Nanomaterials
Authors: Saeid Ghorbanzadeh-Mashkani, Parisa Tajer-Mohammad-Ghazvini, Ahmad Nozad-Golikand, Rouha Kasra-Kermanshahi, Mohammad-Reza Davarpanah
Abstract:
Today, biogenic magnetite nanoparticles among magnetic nanoparticles have unique attracted attention because of their magnetic characteristics and potential applications in various fields such as therapeutic and diagnostic. A well known example of these biogenic nanoparticles is magnetosomes of magnetotactic bacteria. In this research, we used two different types of technique for the isolation and purification of magnetosome nanoparticles from the isolated magnetotactic bacterial cells, heat-alkaline treatment and sonication. Also we evaluated pyrogen content and sterility of synthesized the isolated individual magnetosome by the Limulus Amoebocyte Lysate test and direct impedimetric method respectively.Keywords: Biogenic magnetic nanoparticles, Magnetosome, Magnetotactic bacteria, Nanobiotechnology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889596 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.
Keywords: NARX, prediction, stock market, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817595 Slug Tracking Simulation of Severe Slugging Experiments
Authors: Tor Kindsbekken Kjeldby, Ruud Henkes, Ole Jørgen Nydal
Abstract:
Experimental data from an atmospheric air/water terrain slugging case has been made available by the Shell Amsterdam research center, and has been subject to numerical simulation and comparison with a one-dimensional two-phase slug tracking simulator under development at the Norwegian University of Science and Technology. The code is based on tracking of liquid slugs in pipelines by use of a Lagrangian grid formulation implemented in Cµ by use of object oriented techniques. An existing hybrid spatial discretization scheme is tested, in which the stratified regions are modelled by the two-fluid model. The slug regions are treated incompressible, thus requiring a single momentum balance over the whole slug. Upon comparison with the experimental data, the period of the simulated severe slugging cycle is observed to be sensitive to slug generation in the horizontal parts of the system. Two different slug initiation methods have been tested with the slug tracking code, and grid dependency has been investigated.
Keywords: Hydrodynamic initiation, slug tracking, terrain slugging, two-fluid model, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221594 Application of Multi-objective Optimization Packages in Design of an Evaporator Coil
Authors: A.Mosavi
Abstract:
A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design.Keywords: Multi-objective shape optimization, Heat Transfer, multi-physics structures, modeFRONTIER
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050593 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor
Authors: Junior B. N. Adohinzin, Ling Xu
Abstract:
Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen.
Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.
Keywords: Membrane bioreactor (MBR), Moving bed biofilm reactor (MBBR), Nutrients removal, Simultaneous nitrification and denitrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495592 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics
Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi
Abstract:
Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.Keywords: Reactive rotational molding, free surface flows, simulation, smoothed particle hydrodynamics, surface tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077591 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement
Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu
Abstract:
Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties, which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8 and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4 and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall Stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.Keywords: Crumb rubber, dry process, low-density polyethylene, hot mix asphalt, wet process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4704590 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.
Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8054589 Investigation on Nanoparticle Velocity in Two Phase Approach
Authors: E. Mat Tokit, Yusoff M. Z, Mohammed H.
Abstract:
Numerical investigation on the generality of nanoparticle velocity equation had been done on the previous published work. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled are evaluated for volume fraction in the range of 1% to 4%, and nanofluid type of gamma-Al2O3 at Reynolds number range of 67.41 to 286.77. The nanofluid is modeled using single and two phase approach. Three different existing Brownian motion velocities are applied in comparing the generality of the equation for a wide parametric condition. Deviation in between the Brownian motion velocity is identified to be due to the different means of mean free path and constant value used in diffusion equation.
Keywords: Brownian nanoparticle velocity, heat transfer enhancement, nanofluid, two phase model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513588 2D Structured Non-Cyclic Fuzzy Graphs
Authors: T. Pathinathan, M. Peter
Abstract:
Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.Keywords: Double layered fuzzy graph, double layered non-cyclic fuzzy graph, strong, order, degree and size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835587 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin
Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari
Abstract:
In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637586 Intensive Biological Control in Spanish Greenhouses: Problems of the Success
Authors: Carolina Sanchez, Juan R. Gallego, Manuel Gamez, Tomas Cabello
Abstract:
Currently, biological control programs in greenhouse crops involve the use, at the same time, several natural enemies during the crop cycle. Also, large number of plant species grown in greenhouses, among them, the used cultivars are also wide. However, the cultivar effects on entomophagous species efficacy (predators and parasitoids) have been scarcely studied. A new method had been developed, using the factitious prey or host Ephestia kuehniella. It allow us to evaluate, under greenhouse or controlled conditions (semi-field), the cultivar effects on the entomophagous species effectiveness. The work was carried out in greenhouse tomato crop. It has been found the biological and ecological activities of predatory species (Nesidiocoris tenuis) and egg-parasitoid (Trichogramma achaeae) can be well represented with the use of the factitious prey or host; being better in the former than the latter. The data found in the trial are shown and discussed. The developed method could be applied to evaluate new plant materials before making available to farmers as commercial varieties, at low costs and easy use.
Keywords: Cultivar Effects, Efficiency, Predators, Parasitoids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388585 Predicting the Adsorptive Capacities of Biosolid as a Barrier in Soil to Remove Industrial Contaminants
Authors: Hakim Aguedal, Hafida Hentit, Abdallah Aziz, Djillali Rida Merouani, Abdelkader Iddou
Abstract:
The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants which can cause a serious menace. To prevent this risk and to protect the groundwater, we proceeded in this study to test the reliability of a biosolid as barrier to prevent the migration of very dangerous pollutants as ‘Cadmium’ through the different soil layers. In this study, we tried to highlight the effect of several parameters such as: turbidity (different cycle of Hydration/Dehydration), rainfall, effect of initial Cd(II) concentration and the type of soil. These parameters allow us to find the most effective manner to integrate this barrier in the soil. From the results obtained, we found a significant effect of the barrier. Indeed, the recorded passing quantities are lowest for the highest rainfall; we noted also that the barrier has a better affinity towards higher concentrations; the most retained amounts of cadmium has been in the top layer of the two types of soil tested, while the lowest amounts of cadmium are recorded in the bottom layers of soils.Keywords: Adsorption of Cadmium, Barrier, Groundwater Pollution, Protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343584 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites
Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria
Abstract:
Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.
Keywords: Gamma irradiation, grapheme oxide, nanocomposites, PVDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219583 Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface
Authors: Sanwu Wang, Hongli Dang, Wenhua Xue, Darwin Shields, Xin Liu, Friederike C. Jentoft, Daniel E. Resasco
Abstract:
The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurations at the water-Pd interface promote decarbonylation of furfural.
Keywords: Ab initio molecular dynamics simulations, bio-fuels, density functional theory, liquid-solid interfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238582 Spray Combustion Dynamics under Thermoacoustic Oscillations
Authors: Wajid A. Chishty, Stephen D. Lepera, Uri Vandsburger
Abstract:
Thermoacoustic instabilities in combustors have remained a topic of investigation for over a few decades due to the challenges it posses to the operation of low emission gas turbines. For combustors burning liquid fuel, understanding the cause-andeffect relationship between spray combustion dynamics and thermoacoustic oscillations is imperative for the successful development of any control methodology for its mitigation. The paper presents some very unique operating characteristics of a kerosene-fueled diffusion type combustor undergoing limit-cycle oscillations. Combustor stability limits were mapped using three different-sized injectors. The results show that combustor instability depends on the characteristics of the fuel spray. A simple analytic analysis is also reported in support of a plausible explanation for the unique combustor behavior. The study indicates that high amplitude acoustic pressure in the combustor may cause secondary breakdown of fuel droplets resulting in premixed pre-vaporized type burning of the diffusion type combustor.Keywords: Secondary droplet breakup, Spray dynamics, Taylor Analogy Breakup Model, Thermoacoustic instabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855581 A Refined Energy-Based Model for Friction-Stir Welding
Authors: Samir A. Emam, Ali El Domiaty
Abstract:
Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.
Keywords: Friction-stir welding, Energy, Aluminum Alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750580 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin
Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin
Abstract:
The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.
Keywords: Drought index, climatic projections, precipitation of the Uruguay River Basin, Standardized Precipitation Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596