Search results for: Data Assimilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7466

Search results for: Data Assimilation

6176 Understanding Physical Activity Behavior of Type 2 Diabetics Using the Theory of Planned Behavior and Structural Equation Modeling

Authors: D. O. Omondi, M. K. Walingo, G. M. Mbagaya, L. O. A. Othuon

Abstract:

Understanding patient factors related to physical activity behavior is important in the management of Type 2 Diabetes. This study applied the Theory of Planned Behavior model to understand physical activity behavior among sampled Type 2 diabetics in Kenya. The study was conducted within the diabetic clinic at Kisii Level 5 Hospital and adopted sequential mixed methods design beginning with qualitative phase and ending with quantitative phase. Qualitative data was analyzed using grounded theory analysis method. Structural equation modeling using maximum likelihood was used to analyze quantitative data. The common fit indices revealed that the theory of planned behavior fitted the data acceptably well among the Type 2 diabetes and within physical activity behavior {¤ç2 = 213, df = 84, n=230, p = .061, ¤ç2/df = 2.53; TLI = .97; CFI =.96; RMSEA (90CI) = .073(.029, .08)}. This theory proved to be useful in understanding physical activity behavior among Type 2 diabetics.

Keywords: Physical activity, Theory of Planned Behavior, Type2 diabetes, Kenya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
6175 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghodsi, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software meanwhile some people are unable to monitor their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. In this research, we present a device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. The various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data are collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud and stores it there; the processed digital data are then instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors, and other health staff can collect these data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate these data for awareness of the patient's current health status. Moreover, the system is connected to a GPS module. In emergencies, the concerned team can be positioning the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the Remote Health Monitoring System (RHMS) is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system 11×10×10 cm3 with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured for 100 GBP (British Pound Sterling), and can facilitate the communication between patients and health systems, but also it can be employed for numerous other uses including communication sectors in the aerospace and transportation systems.

Keywords: Embedded Technology, Telemonitoring system, Microcontroller, Arduino UNO, Cloud storage, GPS, RHMS, Remote Health Monitoring System, Alert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272
6174 Solid Waste Management in Adama, Ethiopia: Aspects and Challenges

Authors: Mengist Hailemariam, Assegid Ajeme

Abstract:

The ever increasing amount of solid waste (SW) generated which is exacerbated by lack of proper waste management system is of growing concern worldwide and in major cities in developing countries due to its social, economic and environmental implications. This study attempts to describe the aspects of solid waste management (SWM) in Adama, one of the fast urbanizing cities in Ethiopia, and highlights the challenges thereof. Data were gathered through interview supplemented by field observation and self-administered questionnaire. Then, the data were analyzed using the Statistical Package for Social Science (SPSS) software. In addition, secondary data were gathered from documents. Findings revealed that the current SWM practice couldn’t cope with the fast urbanizing needs and the rapid population growth exhibited by the city. Besides, major factors contributing to the inefficient system were identified. The study would provide practical insights to decision makers in developing a sustainable SWM system leading to minimized risk in the city.

Keywords: Adama, Aspects and challenges, Ethiopia, Solid waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7611
6173 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables

Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin

Abstract:

The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.

Keywords: Education faculty students, attitude towards e-learning, gender, daily Internet usage time, m-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
6172 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: Taxi industry, decision making, recommendation system, embedding model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427
6171 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: Data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
6170 Clustering Based Formulation for Short Term Load Forecasting

Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha

Abstract:

A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

Keywords: Load forecasting, clustering, fuzzy inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
6169 Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

Authors: Hiba Naccache

Abstract:

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

Keywords: Gender, education, math, statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
6168 Neutron Flux Characterization for Radioisotope Production at ETRR-2

Authors: A. M. Hassanain, Nader M. A. Mohamed, M. Naguib Aly, Alya A. Badawi, M. A. Gaheen

Abstract:

The thermal, epithermal and fast fluxes were calculated for three irradiation channels at Egypt Second Research Reactor (ETRR-2) using CITVAP code. The validity of the calculations was verified by experimental measurements. There are some deviations between measurements and calculations. This is due to approximations in the calculation models used, homogenization of regions, condensation of energy groups and uncertainty in nuclear data used. Neutron flux data for the three irradiation channels are now available. This would enable predicting the irradiation conditions needed for future radioisotope production.

Keywords: ETRR-2, Neutron flux, Radioisotope production, CITVAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
6167 Ranking DMUs by Ideal PPS in Data Envelopment Analysis

Authors: V.Rezaie, M.Khanmohammady

Abstract:

An original DEA model is to evaluate each DMU optimistically, but the interval DEA Model proposed in this paper has been formulated to obtain an efficiency interval consisting of Evaluations from both the optimistic and the pessimistic view points. DMUs are improved so that their lower bounds become so large as to attain the maximum Value one. The points obtained by this method are called ideal points. Ideal PPS is calculated by ideal of efficiency DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. Finally we extend the efficiency interval of a DMU under variable RTS technology.

Keywords: Data envelopment analysis (DEA), Decision makingunit (DMU), Interval DEA, Ideal points, Ideal PPS, Return to scale(RTS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
6166 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
6165 Utilization of Advanced Data Storage Technology to Conduct Construction Industry on Clear Environment

Authors: Javad Majrouhi Sardroud, Mukesh C. Limbachiya

Abstract:

Construction projects generally take place in uncontrolled and dynamic environments where construction waste is a serious environmental problem in many large cities. The total amount of waste and carbon dioxide emissions from transportation vehicles are still out of control due to increasing construction projects, massive urban development projects and the lack of effective tools for minimizing adverse environmental impacts in construction. This research is about utilization of the integrated applications of automated advanced tracking and data storage technologies in the area of environmental management to monitor and control adverse environmental impacts such as construction waste and carbon dioxide emissions. Radio Frequency Identification (RFID) integrated with the Global Position System (GPS) provides an opportunity to uniquely identify materials, components, and equipments and to locate and track them using minimal or no worker input. The transmission of data to the central database will be carried out with the help of Global System for Mobile Communications (GSM).

Keywords: Clear environment, Construction industry, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
6164 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
6163 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators

Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel

Abstract:

The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.

Keywords: Sustainability, observatory, environmental indicators, sociocultural indicators, development, tourism, Algarve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
6162 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan N. Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: Mixed Methods, Social Network Analysis, multi-cultural learning, Social Network Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
6161 Implementation of Vertical Neutron Camera (VNC) for ITER Fusion Plasma Neutron Source Profile Reconstruction

Authors: V. Amosov, Yu. Kashchuk, A. Krasilnikov, A. Kostin, A. Khovanskiy, A. Leonov, N. Rodionov, R. Rodionov

Abstract:

In present work the problem of the ITER fusion plasma neutron source parameter reconstruction using only the Vertical Neutron Camera data was solved. The possibility of neutron source parameter reconstruction was estimated by the numerical simulations and the analysis of adequateness of mathematic model was performed. The neutron source was specified in a parametric form. The numerical analysis of solution stability with respect to data distortion was done. The influence of the data errors on the reconstructed parameters is shown: • is reconstructed with errors less than 4% at all examined values of δ (until 60%); • is determined with errors less than 10% when δ do not overcome 5%; • is reconstructed with relative error more than 10 %; • integral intensity of the neutron source is determined with error 10% while δ error is less than 15%; where -error of signal measurements, (R0,Z0), the plasma center position,- /parameter of neutron source profile.

Keywords: ITER, neutronsource, neutron source profile reconstruction, Vertical Neutron Camera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
6160 An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks

Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read

Abstract:

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Keywords: Wireless sensor networks, remote method invocation, transmission time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
6159 Quality of Concrete of Recent Development Projects in Libya

Authors: Mohamed .S .Alazhari, Milad. M. Al Shebani

Abstract:

Numerous concrete structures projects are currently running in Libya as part of a US$50 billion government funding. The quality of concrete used in 20 different construction projects were assessed based mainly on the concrete compressive strength achieved. The projects are scattered all over the country and are at various levels of completeness. For most of these projects, the concrete compressive strength was obtained from test results of a 150mm standard cube mold. Statistical analysis of collected concrete compressive strengths reveals that the data in general followed a normal distribution pattern. The study covers comparison and assessment of concrete quality aspects such as: quality control, strength range, data standard deviation, data scatter, and ratio of minimum strength to design strength. Site quality control for these projects ranged from very good to poor according to ACI214 criteria [1]. The ranges (Rg) of the strength (max. strength – min. strength) divided by average strength are from (34% to 160%). Data scatter is measured as the range (Rg) divided by standard deviation () and is found to be (1.82 to 11.04), indicating that the range is ±3σ. International construction companies working in Libya follow different assessment criteria for concrete compressive strength in lieu of national unified procedure. The study reveals that assessments of concrete quality conducted by these construction companies usually meet their adopted (internal) standards, but sometimes fail to meet internationally known standard requirements. The assessment of concrete presented in this paper is based on ACI, British standards and proposed Libyan concrete strength assessment criteria.

Keywords: Acceptance criteria, Concrete, Compressive strength, quality control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
6158 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, Network, Qualipoc, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
6157 Low Energy Method for Data Delivery in Ubiquitous Network

Authors: Tae Kyung Kim, Hee Suk Seo

Abstract:

Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.

Keywords: Data delivery, routing, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
6156 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: Artificial neural network, back-propagation, tide data, training algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
6155 A Decision Support Tool for Evaluating Mobility Projects

Authors: H. Omrani, P. Gerber

Abstract:

Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).

Keywords: Decision support tool, hybrid approach, urban mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
6154 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics

Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan

Abstract:

The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).

Keywords: Cloud forensics, data protection laws, GDPR, IoT forensics, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
6153 Factors Affecting Media Literacy of Early Teenagers

Authors: Khajornjit Bunnag

Abstract:

The purposes of this research are: 1) to study the media literacy of early teenagers, and 2) to study the interaction between gender and timing of media exposure that affects the media literacy of teenagers. The sample of the study included 400 young people aged between 11 to 17 and who were living in Bangkok. The data was collected using questionnaires. Two-way ANOVA was used in analyzing the collected data. The result revealed that gender and timing of media exposure affected the media literacy of early teenagers with statistical significance at the level of 0.05.

Keywords: Gender, Media Literacy, Teenager, Timing of Media Exposure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
6152 Tomographic Images Reconstruction Simulation for Defects Detection in Specimen

Authors: Kedit J.

Abstract:

This paper is the tomographic images reconstruction simulation for defects detection in specimen. The specimen is the thin cylindrical steel contained with low density materials. The defects in material are simulated in three shapes.The specimen image function will be transformed to projection data. Radon transform and its inverse provide the mathematical for reconstructing tomographic images from projection data. The result of the simulation show that the reconstruction images is complete for defect detection.

Keywords: Tomography, Tomography Reconstruction, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
6151 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: A. Amrani, O. Allali, A. Ben Hamida, F. Defrance, S. Morland, E. Pineau, T. Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: Climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
6150 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
6149 The Impact of Trade on Social Development

Authors: Umut Gunduz, Mehtap Hisarciklilar, Tolga Kaya

Abstract:

Studies revealing the positive relationship between trade and income are often criticized with the argument that “development should mean more than rising incomes". Taking this argument as a base and utilizing panel data, Davies and Quinlivan [1] have demonstrated that increases in trade are positively associated with future increases in social welfare as measured by the Human Development Index (HDI). The purpose of this study is twofold: Firstly, utilizing an income based country classification; it is aimed to investigate whether the positive association between foreign trade and HDI is valid within all country groups. Secondly, keeping the same categorization as a base; it is aimed to reveal whether the positive link between trade and HDI still exists when the income components of the index are excluded. Employing a panel data framework of 106 countries, this study reveals that the positive link between trade and human development is valid only for high and medium income countries. Moreover, the positive link between trade and human development diminishes in lower-medium income countries when only non-income components of the index are taken into consideration.

Keywords: HDI, foreign trade, development, panel data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
6148 Web Content Mining: A Solution to Consumer's Product Hunt

Authors: Syed Salman Ahmed, Zahid Halim, Rauf Baig, Shariq Bashir

Abstract:

With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.

Keywords: Data mining, web mining, search engines, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
6147 Spatial Analysis and Statistics for Zoning of Urban Areas

Authors: Benedetto Manganelli, Beniamino Murgante

Abstract:

The use of statistical data and of the neural networks, capable of elaborate a series of data and territorial info, have allowed the making of a model useful in the subdivision of urban places into homogeneous zone under the profile of a social, real estate, environmental and urbanist background of a city. The development of homogeneous zone has fiscal and urbanist advantages. The tools in the model proposed, able to be adapted to the dynamic changes of the city, allow the application of the zoning fast and dynamic.

Keywords: Homogeneous Urban Areas, Multidimensional Scaling, Neural Network, Real Estate Market, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939