Search results for: Clinical deterioration prediction
288 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844287 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options
Authors: Zeynep İltüzer Samur, Gül Tekin Temur
Abstract:
Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.
Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084286 Clinical and Methodological Issues in the Research on the Rape Myth
Authors: Ana Pauna, Zbigniew Pleszewski
Abstract:
The purpose of this study is to revisit the concept of rape as represented by professionals in the literature as well as its perception (beliefs and attitudes) in the population at large and to propose methodological improvements to its measurement tool. Rape is a serious crime threatening its victim-s physical and mental health and integrity; and as such is legally prosecuted in all modern societies. The problem is not in accepting or rejecting rape as a criminal act, but rather in the vagueness of its interpretations and “justifications" maintained in the mentality of modern societies - known in the literature as the phenomenon of "rape-myth". The rapemyth can be studied from different perspectives: criminology, sociology, ethics, medicine and psychology. Its investigation requires rigorous scientific objectivity, free of passion (victims of rape are at risk of emotional bias), free of activism (social activists, even if wellintentioned are also biased), free of any pre-emptive assumptions or prejudices. To apply a rigorous scientific procedure, we need a solid, valid and reliable measurement. Rape is a form of heterosexual or homosexual aggression, violently forcing the victim to give-in in the sexual activity of the aggressor against her/his will. Human beings always try to “understand" or find a reason justifying their acts. Psychological literature provides multiple clinical and experimental examples of it; just to mention the famous studies by Milgram on the level of electroshock delivered by the “teacher" towards the “learner" if “scientifically justifiable" or the studies on the behavior of “prisoners" and the “guards" and many other experiments and field observations. Sigmund Freud presented the phenomenon of unconscious justification and called it rationalization. The multiple justifications, rationalizations and repeated opinions about sexual behavior contribute to a myth maintained in the society. What kind of “rationale" our societies apply to “understand" the non-consensual sexual behavior? There are many, just to mention few: • Sex is a ludistic activity for both participants, therefore – even if not consented – it should bring pleasure to both. • Everybody wants sex, but only men are allowed to manifest it openly while women have to pretend the opposite, thus men have to initiate sexual behavior and women would follow. • A person who strongly needs sex is free to manifest it and struggle to get it; the person who doesn-t want it must not reveal her/his sexual attraction and avoid risky situations; otherwise she/he is perceived as a promiscuous seducer. • A person who doesn-t fight against the sexual initiator unconsciously accepts the rape (does it explain why homosexual rapes are reported less frequently than rapes against women?). • Women who are raped deserve it because their wardrobe is very revealing and seducing and they ''willingly'' go to highly risky places (alleys, dark roads, etc.). • Men need to ventilate their sexual energy and if they are deprived of a partner their urge to have sex is difficult to control. • Men are supposed to initiate and insist even by force to have sex (their testosterone makes them both sexual and aggressive). The paper overviews numerous cultural beliefs about masculine versus feminine behavior and their impact on the “rape myth".Keywords: Rape Myth components, psycho-social factors, testing, Likert-type scale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110285 Flow Discharge Determination in Straight Compound Channels Using ANNs
Authors: A. Zahiri, A. A. Dehghani
Abstract:
Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558284 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge
Authors: Souad Demigha
Abstract:
The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.
Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669283 Mass Casualty Acute Pepper Spray Inhalation Respiratory Effect Severity
Authors: B. Michelle Sweeting
Abstract:
Pepper spray use has gained momentum since 1992 and although the active ingredient is readily available, it is considered a weapon with restricted use in many regions, including The Bahamas. In light of controversy in the literature regarding the severity of presenting respiration complaints among individuals postacute exposure of pepper spray inhalation, this descriptive case series study was conducted to assess the respiratory status of persons evaluated during a mass casualty in The Bahamas. Parameters noted were patients- demographics and respiration severity determined via clinical examination findings, disposition and follow-up review of the 20 persons. Their most common complaint was difficulty breathing post exposure. Two required admission and stayed for <24 hours uneventfully. All cases remained without residual complaints upon follow-up. Results showed that although respiration difficulty was perceived as the most detrimental of presenting complaints, it was noted to be mostly subjective with benign outcome.Keywords: Acute Pepper Spray Inhalation, Capsaicinoids, Oleoresin Capsicum, Pepper spray, Respiratory severity severity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065282 Investigating the Demand for Short-shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Ashley Hopwell, Alistair Duffy
Abstract:
Accurate forecasting of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. This paper is an attempt to understand the cause for the high level of variability such as weather, holidays etc., in demand of SME wholesalers. Therefore, understanding the significance of unidentified factors may improve the forecasting accuracy. This paper presents the current literature on the factors used to predict demand and the existing forecasting techniques of short shelf life products. It then investigates a variety of internal and external possible factors, some of which is not used by other researchers in the demand prediction process. The results presented in this paper are further analysed using a number of techniques to minimize noise in the data. For the analysis past sales data (January 2009 to May 2014) from a UK based SME wholesaler is used and the results presented are limited to product ‘Milk’ focused on café’s in derby. The correlation analysis is done to check the dependencies of variability factor on the actual demand. Further PCA analysis is done to understand the significance of factors identified using correlation. The PCA results suggest that the cloud cover, weather summary and temperature are the most significant factors that can be used in forecasting the demand. The correlation of the above three factors increased relative to monthly and becomes more stable compared to the weekly and daily demand.Keywords: Demand Forecasting, Deteriorating Products, Food Wholesalers, Principal Component Analysis and Variability Factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368281 Effect of Transverse Reinforcement on the Behavior of Tension Lap splice in High-Strength Reinforced Concrete Beams
Authors: Ahmed H. Abdel-Kareem, Hala. Abousafa, Omia S. El-Hadidi
Abstract:
The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of lap splice of steel reinforcement in tension zones in high strength concrete beams, are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of transverse reinforcement around spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from splitting bond failure to flexural failure when the amount of transverse reinforcement in splice region increased, and the compressive strength increased up to 100 MPa. The presence of transverse reinforcement around spliced bars had pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high strength concrete beams.
Keywords: Ductility, high strength concrete, tension lap splice, transverse reinforcement, steel stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4712280 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: Injection molding, plastic defects, short shot, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532279 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671278 Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO
Authors: Nemir Al-Azzawi, Harsa A. Mat Sakim, Wan Ahmed K. Wan Abdullah, Yasmin Mohd Yacob
Abstract:
Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.
Keywords: Feature-based registration, mutual information, nonsubsampled contourlet transform, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970277 Computing Entropy for Ortholog Detection
Authors: Hsing-Kuo Pao, John Case
Abstract:
Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.
Keywords: compression, decision tree, entropy, ortholog, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827276 Finite Element Prediction of Multi-Size Particulate Flow through Two-Dimensional Pump Casing
Authors: K. V. Pagalthivarthi, R. J. Visintainer
Abstract:
Two-dimensional Eulerian (volume-averaged) continuity and momentum equations governing multi-size slurry flow through pump casings are solved by applying a penalty finite element formulation. The computational strategy validated for multi-phase flow through rectangular channels is adapted to the present study. The flow fields of the carrier, mixture and each solids species, and the concentration field of each species are determined sequentially in an iterative manner. The eddy viscosity field computed using Spalart-Allmaras model for the pure carrier phase is modified for the presence of particles. Streamline upwind Petrov-Galerkin formulation is used for all the momentum equations for the carrier, mixture and each solids species and the concentration field for each species. After ensuring mesh-independence of solutions, results of multi-size particulate flow simulation are presented to bring out the effect of bulk flow rate, average inlet concentration, and inlet particle size distribution. Mono-size computations using (1) the concentration-weighted mean diameter of the slurry and (2) the D50 size of the slurry are also presented for comparison with multi-size results.
Keywords: Eulerian-Eulerian model, Multi-size particulate flow, Penalty finite elements, Pump casing, Spalart-Allmaras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430275 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel
Authors: G. H. Senussi
Abstract:
The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284274 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric TB Patients
Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam
Abstract:
The study addresses the increasing challenge of pediatric presumptive tuberculosis, emphasizing the need to understand the factors associated with it. The research aims to determine the proportion of presumptive TB and factors associated with it among suspected pediatric tuberculosis patients. A cross-sectional study was conducted at ICDDR-Bangladesh, collecting specimens from suspected pediatric patients and using logistic regression for data analysis. The study found a high proportion of presumptive TB (85.7%) but no statistically significant differences between presumptive and non-presumptive TB. Theoretical importance of the study highlights the importance of identifying factors associated with presumptive TB for better control and management strategies. Specimens were collected from 84 suspected pediatric patients diagnosed with TB based on clinical symptoms/radiological findings. Microbiological tests like smear-microscopy, culture, and GeneXpert were used to isolate presumptive TB and confirmed TB. The proportion of presumptive TB was 85.7% among suspected pediatric TB patients. Among various factors that were not found to be associated with the presumptive TB. The study concludes that despite a high proportion of presumptive TB, no significant differences were found between presumptive and non-presumptive TB cases.
Keywords: Presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84273 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842272 Biomechanical Findings in Patients with Bipartite Medial Cuneiforms
Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz
Abstract:
Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessment were performed on two patients who reported with foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan ™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the first ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.
Keywords: Bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424271 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388270 Ultrasonographic Manifestations of Periventricular Leukomalacia in Preterm Neonates at Teaching Hospital Peradeniya, Sri Lanka
Authors: P. P. Chandrasekera, P. B. Hewavithana, S. Rosario, M. H. M. N. Hearth, D. M. R. D. Mirihella
Abstract:
Periventricular Leukomalacia (PVL) is a White Matter Injury (WMI) of preterm neonatal brain. Objectives of the study were to assess the neuro-developmental outcome at one year of age and to determine a good protocol of cranial ultrasonography to detect PVL. Two hundred and sixty four preterm neonates were included in the study. Series of cranial ultrasound scans were done by using a dedicated neonatal head probe 4-10 MHz of Logic e portable ultrasound scanner. Clinical history of seizures, abnormal head growth (hydrocephalus or microcephaly) and developmental milestones were assessed and neurological examinations were done until one year of age. Among live neonates, 57% who had cystic PVL (Grades 2 and 3) manifested as cerebral palsy. In conclusion cystic PVL has permanent neurological disabilities like cerebral palsy. Good protocol of real time cranial ultrasonography to detect PVL is to perform scans at least once a week until one month and at term (40 weeks of gestation).
Keywords: Cerebral palsy, cranial ultrasonography, Periventricular Leukomalacia (PVL), preterm neonates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573269 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed where located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urban area in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recent years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood events in 2013 as the worst studied case for all those communities in this municipality. Moreover, other problems are also faced in this watershed, such shortage water supply for domestic consumption and agriculture utilizations including a deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of the appropriated application of some short period rainfall forecasting model as they aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in a short period of 7-10 days in advance during rainy season instead of real time record. The IDV product can be present in an advance period of rainfall with time step of 3-6 hours was introduced to the communities. The result can be used as input data to the hydrologic modeling system model (HEC-HMS) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as the water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at the dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfying. The product of rainfall from IDV was fair while compared with observed data. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.
Keywords: Global rainfall, flood forecasting, hydrologic modeling system, river analysis system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415268 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy
Authors: Mohamed Omar
Abstract:
Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845267 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.
Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911266 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case
Authors: Ahmed Badawi
Abstract:
This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950265 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592264 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof
Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini
Abstract:
The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.Keywords: CFD, roof, building, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609263 Experimental and Numerical Simulation of Fire in a Scaled Underground Station
Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler
Abstract:
The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643262 Poincaré Plot for Heart Rate Variability
Authors: Mazhar B. Tayel, Eslam I. AlSaba
Abstract:
Heart is the most important part in the body of living organisms. It affects and is affected by any factor in the body. Therefore, it is a good detector for all conditions in the body. Heart signal is a non-stationary signal; thus, it is utmost important to study the variability of heart signal. The Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and has become important dependent measure in psychophysiology and behavioral medicine. The standards of measurements, physiological interpretation and clinical use for HRV that are most often used were described in many researcher papers, however, remain complex issues are fraught with pitfalls. This paper presents one of the nonlinear techniques to analyze HRV. It discusses many points like, what Poincaré plot is and how Poincaré plot works; also, Poincaré plot's merits especially in HRV. Besides, it discusses the limitation of Poincaré cause of standard deviation SD1, SD2 and how to overcome this limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared toSD1 and SD2.
Keywords: Heart rate variability, chaotic system, Poincaré, variance, standard deviation, complex correlation measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7449261 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835260 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201259 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)
Authors: Salem Alsanusi, Loubna Bentaher
Abstract:
Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214