Search results for: satellite images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1320

Search results for: satellite images

120 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
119 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
118 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth

Authors: T. B. Karu Jayasundara

Abstract:

The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.

Keywords: Dust particles, high and low tides, heavy minerals. low gravity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
117 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
116 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
115 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
114 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
113 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods

Authors: I. Laurence Aroquiaraj, K. Thangavel

Abstract:

Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.

Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
112 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
111 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil & condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.

Keywords: Electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
110 A Web Oriented Spread Spectrum Watermarking Procedure for MPEG-2 Videos

Authors: Franco Frattolillo

Abstract:

In the last decade digital watermarking procedures have become increasingly applied to implement the copyright protection of multimedia digital contents distributed on the Internet. To this end, it is worth noting that a lot of watermarking procedures for images and videos proposed in literature are based on spread spectrum techniques. However, some scepticism about the robustness and security of such watermarking procedures has arisen because of some documented attacks which claim to render the inserted watermarks undetectable. On the other hand, web content providers wish to exploit watermarking procedures characterized by flexible and efficient implementations and which can be easily integrated in their existing web services frameworks or platforms. This paper presents how a simple spread spectrum watermarking procedure for MPEG-2 videos can be modified to be exploited in web contexts. To this end, the proposed procedure has been made secure and robust against some well-known and dangerous attacks. Furthermore, its basic scheme has been optimized by making the insertion procedure adaptive with respect to the terminals used to open the videos and the network transactions carried out to deliver them to buyers. Finally, two different implementations of the procedure have been developed: the former is a high performance parallel implementation, whereas the latter is a portable Java and XML based implementation. Thus, the paper demonstrates that a simple spread spectrum watermarking procedure, with limited and appropriate modifications to the embedding scheme, can still represent a valid alternative to many other well-known and more recent watermarking procedures proposed in literature.

Keywords: Copyright protection, digital watermarking, intellectual property protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
109 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.

Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
108 Embedded Semi-Fragile Signature Based Scheme for Ownership Identification and Color Image Authentication with Recovery

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a novel scheme is proposed for Ownership Identification and Color Image Authentication by deploying Cryptography & Digital Watermarking. The color image is first transformed from RGB to YST color space exclusively designed for watermarking. Followed by color space transformation, each channel is divided into 4×4 non-overlapping blocks with selection of central 2×2 sub-blocks. Depending upon the channel selected two to three LSBs of each central 2×2 sub-block are set to zero to hold the ownership, authentication and recovery information. The size & position of sub-block is important for correct localization, enhanced security & fast computation. As YS ÔèÑ T so it is suitable to embed the recovery information apart from the ownership and authentication information, therefore 4×4 block of T channel along with ownership information is then deployed by SHA160 to compute the content based hash that is unique and invulnerable to birthday attack or hash collision instead of using MD5 that may raise the condition i.e. H(m)=H(m'). For recovery, intensity mean of 4x4 block of each channel is computed and encoded upto eight bits. For watermark embedding, key based mapping of blocks is performed using 2DTorus Automorphism. Our scheme is oblivious, generates highly imperceptible images with correct localization of tampering within reasonable time and has the ability to recover the original work with probability of near one.

Keywords: Hash Collision, LSB, MD5, PSNR, SHA160

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
107 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
106 A Robust Salient Region Extraction Based on Color and Texture Features

Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen

Abstract:

In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.

Keywords: salient regions, color and texture features, image segmentation, saliency metric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
105 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements

Authors: M. Linek

Abstract:

This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.

Keywords: Scanning electron microscope, computed tomography, cement concrete, airfield pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114
104 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
103 Material Density Mapping on Deformable 3D Models of Human Organs

Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat

Abstract:

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
102 Object Recognition on Horse Riding Simulator System

Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim

Abstract:

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
101 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.

Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
100 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
99 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform

Authors: Shimal Das, Dibyendu Ghoshal

Abstract:

Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.

Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
98 Optimized Facial Features-based Age Classification

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park

Abstract:

The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.

Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
97 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
96 Wildfires Assessed by Remote Sense Images and Burned Land Monitoring

Authors: M. C. Proença

Abstract:

The tools described in this paper enable the location of burned areas where took place the annihilation of natural habitats and establishes a baseline for major changes in forest ecosystems during recovery. Moreover, the result allows the follow up of the surface fuel loading, allowing the evaluation and guidance of restoration measures to remote areas by phased time planning. This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. The goal is to show that this evaluation can be done with remote sense data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it accessible for local workers in the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further needs for restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away the animal population, besides loss of all crops in rural areas that are essential as local resources. The economic interests are also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years.

Keywords: Image processing, remote sensing, wildfires, burned areas, SENTINEL-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
95 Development of EPID-based Real time Dose Verification for Dynamic IMRT

Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer

Abstract:

An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.

Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
94 Linguistic Devices Reflecting Violence in Border–Provinces of Southern Thailand on the Front Page of Local and National Newspapers

Authors: Chanokporn Angsuviriya

Abstract:

The objective of the study is to analyze linguistic devices reflecting the violence in the south border provinces; namely Pattani, Yala, Narathiwat and Songkla on 1,344 front pages of three local newspapers; namely ChaoTai, Focus PhakTai and Samila Time and of two national newspapers, including ThaiRath and Matichon, between 2004 and 2005, and 2011 and 2012. The study shows that there are two important linguistic devices: 1) lexical choices consisting of the use of verbs describing violence, the use of quantitative words and the use of words naming someone who committed violent acts, and 2) metaphors consisting of “A VIOLENT PROBLEM IS HEAT”, “A VICTIM IS A LEAF”, and “A TERRORIST IS A DOG”. Comparing linguistic devices between two types of newspapers, national newspapers choose to use words more violently than local newspapers do. Moreover, they create more negative images of the south of Thailand by using stative verbs. In addition, in term of metaphors “A TERRORIST IS A FOX.” is only found in national newspapers. As regards naming terrorists “southern insurgents”, this noun phrase which is collectively called by national newspapers has strongly negative meaning. Moreover, “southern insurgents” have been perceived by the Thais in the whole country while “insurgents” that are not modified have been only used by local newspapers.

Keywords: Linguistic Devices, Local Newspapers, National Newspapers, Violence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
93 Hiding Data in Images Using PCP

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

In recent years, everything is trending toward digitalization and with the rapid development of the Internet technologies, digital media needs to be transmitted conveniently over the network. Attacks, misuse or unauthorized access of information is of great concern today which makes the protection of documents through digital media a priority problem. This urges us to devise new data hiding techniques to protect and secure the data of vital significance. In this respect, steganography often comes to the fore as a tool for hiding information. Steganography is a process that involves hiding a message in an appropriate carrier like image or audio. It is of Greek origin and means "covered or hidden writing". The goal of steganography is covert communication. Here the carrier can be sent to a receiver without any one except the authenticated receiver only knows existence of the information. Considerable amount of work has been carried out by different researchers on steganography. In this work the authors propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by selecting the embedding pixels using some mathematical function and then finds the 8 neighborhood of the each selected pixel and map each bit of the secret message in each of the neighbor pixel coordinate position in a specified manner. Before embedding a checking has been done to find out whether the selected pixel or its neighbor lies at the boundary of the image or not. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.

Keywords: Cover Image, LSB, Pixel Coordinate Position (PCP), Stego Image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
92 Persian/Arabic Document Segmentation Based On Pyramidal Image Structure

Authors: Seyyed Yasser Hashemi, Khalil Monfaredi

Abstract:

Automatic transformation of paper documents into electronic documents requires document segmentation at the first stage. However, some parameters restrictions such as variations in character font sizes, different text line spacing, and also not uniform document layout structures altogether have made it difficult to design a general-purpose document layout analysis algorithm for many years. Thus in most previously reported methods it is inevitable to include these parameters. This problem becomes excessively acute and severe, especially in Persian/Arabic documents. Since the Persian/Arabic scripts differ considerably from the English scripts, most of the proposed methods for the English scripts do not render good results for the Persian scripts. In this paper, we present a novel parameter-free method for segmenting the Persian/Arabic document images which also works well for English scripts. This method segments the document image into maximal homogeneous regions and identifies them as texts and non-texts based on a pyramidal image structure. In other words the proposed method is capable of document segmentation without considering the character font sizes, text line spacing, and document layout structures. This algorithm is examined for 150 Arabic/Persian and English documents and document segmentation process are done successfully for 96 percent of documents.

Keywords: Persian/Arabic document, document segmentation, Pyramidal Image Structure, skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
91 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method

Authors: K. Machida, H. Yamada

Abstract:

Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.

Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703