Search results for: online learning higher-order learning attributes.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2803

Search results for: online learning higher-order learning attributes.

1603 User Acceptance of Educational Games: A Revised Unified Theory of Acceptance and Use of Technology (UTAUT)

Authors: Roslina Ibrahim, Azizah Jaafar

Abstract:

Educational games (EG) seem to have lots of potential due to digital games popularity and preferences of our younger generations of learners. However, most studies focus on game design and its effectiveness while little has been known about the factors that can affect users to accept or to reject EG for their learning. User acceptance research try to understand the determinants of information systems (IS) adoption among users by investigating both systems factors and users factors. Upon the lack of knowledge on acceptance factors for educational games, we seek to understand the issue. This study proposed a model of acceptance factors based on Unified Theory of Acceptance and Use of Technology (UTAUT). We use original model (performance expectancy, effort expectancy and social influence) together with two new determinants (learning opportunities and enjoyment). We will also investigate the effect of gender and gaming experience that moderate the proposed factors.

Keywords: educational games, games acceptance, user acceptance model, UTAUT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3708
1602 The Impact of Website Personality on Consumers' Initial Trust towards Online Retailing Websites

Authors: Jasmine Yeap Ai Leen, T. Ramayah, Azizah Omar

Abstract:

E-tailing websites are often perceived to be static, impersonal and distant. However, with the movement of the World Wide Web to Web 2.0 in recent years, these online websites have been found to display personalities akin to 'humanistic' qualities and project impressions much like its retailing counterpart i.e. salespeople. This paper examines the personality of e-tailing websites and their impact on consumers- initial trust towards the sites. A total of 239 Internet users participated in this field experiment study which utilized 6 online book retailers- websites that the participants had not previously visited before. Analysis revealed that out of four website personalities (sincerity, competence, excitement and sophistication) only sincerity and competence are able to exert an influence in building consumers- trust upon their first visit to the website. The implications of the findings are further elaborated in this paper.

Keywords: E-commerce, e-tailing, initial trust, online trust, partial least squares, website personality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
1601 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1600 Student Satisfaction Data for Work Based Learners

Authors: Rosie Borup, Hanifa Shah

Abstract:

This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.

Keywords: Student satisfaction data, work based learning, employer engagement, NSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1599 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: Augmented reality, engineering, four-bar linkage, Multimedia, user interface, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1598 Some Investigations on Higher Mathematics Scores for Chinese University Student

Authors: Xun Ge, Jingju Qian

Abstract:

To investigate some relations between higher mathe¬matics scores in Chinese graduate student entrance examination and calculus (resp. linear algebra, probability statistics) scores in subject's completion examination of Chinese university, we select 20 students as a sample, take higher mathematics score as a decision attribute and take calculus score, linear algebra score, probability statistics score as condition attributes. In this paper, we are based on rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate importance of condition attributes with respective to decision attribute and strength of condition attributes supporting decision attribute. Results of this investigation will be helpful for university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, higher mathematics scores, decision attribute, condition attribute.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
1597 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills

Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin

Abstract:

When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.

Keywords: Metacognitive thinking skills, procedural knowledge, conditional knowledge, declarative knowledge, meta-teaching and regulation of cognitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1596 Empirical Study from Final Exams of Computer Science Courses Demystifying the Notion of 'an Average Software Engineer'

Authors: Alex Elentukh

Abstract:

The paper is based on data collected from final exams administered during five years teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of on-line graduate students in computer science. Conclusions of the study (each learner is unique and each class is unique) are extrapolated to demystify the notion of an 'average software engineer'. An immediate direction for an educator is to assure a course applies to a wide audience of very different individuals. On another hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.

Keywords: K.3.2 computer & information science education, learner profiling, adaptive learning, software engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
1595 Causes of Construction Delays in Qatar Construction Projects

Authors: Murat Gunduz, Mohanad H. A. AbuHassan

Abstract:

Construction industry mainly focuses on the superstructure, infrastructure, and oil and gas industry. The development of infrastructure projects in developing countries attracted a lot of foreign construction contractors, consultants, suppliers and diversified workforce to interfere and to be evolved in such huge investment. Reducing worksite delays in such projects require knowledge and attention. Therefore, it is important to identify the influencing delay attributes affecting construction projects. The significant project factors affecting construction delays were investigated. Data collection was carried out through an online web survey system to capture significant factors. Significant factors were determined with importance index and relevant recommendations are made. The output of the data analysis would lead the industry experts better assess the impact of construction delays on construction projects.

Keywords: Construction industry, delays, importance index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
1594 Improving E-Government Services for Non- English Speaking Background (NESB) Communities in Australia

Authors: M. Mohammad, Y-C Lan

Abstract:

Australian government agencies have a natural desire to provide migrants a wide range of opportunities. Consequently, government online services should be equally available to migrants with a non-English speaking background (NESB). Despite the commendable efforts of governments and local agencies in Australia to provide such services, in reality, many NESB communities are not taking advantage of these services. This article–based on an extensive case study regarding the use of online government services by the Arabic NESB community in Australia–reports on the possible reasons for this issue, as well as suggestions for improvement. The conclusion is that Australia should implement ICT-based or e-government policies, programmes, and services that more accurately reflect migrant cultures and languages so that migrant integration can be more fully accomplished. Specifically, this article presents an NESB Model that adopts the value of usercentricity or a more individual-focused approach to government online services in Australia.

Keywords: Barriers to use, e-government, ICT, NESB community, online services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1593 Deterministic Random Number Generators for Online Applications

Authors: Natarajan Vijayarangan, Prasanna S. Bidare

Abstract:

Cryptography, Image watermarking and E-banking are filled with apparent oxymora and paradoxes. Random sequences are used as keys to encrypt information to be used as watermark during embedding the watermark and also to extract the watermark during detection. Also, the keys are very much utilized for 24x7x365 banking operations. Therefore a deterministic random sequence is very much useful for online applications. In order to obtain the same random sequence, we need to supply the same seed to the generator. Many researchers have used Deterministic Random Number Generators (DRNGs) for cryptographic applications and Pseudo Noise Random sequences (PNs) for watermarking. Even though, there are some weaknesses in PN due to attacks, the research community used it mostly in digital watermarking. On the other hand, DRNGs have not been widely used in online watermarking due to its computational complexity and non-robustness. Therefore, we have invented a new design of generating DRNG using Pi-series to make it useful for online Cryptographic, Digital watermarking and Banking applications.

Keywords: E-tokens, LFSR, non-linear, Pi series, pseudo random number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
1592 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue

Authors: M. Rezki, A. Belaidi

Abstract:

This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.

Keywords: EMG, health platform, conductor’s tram, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1591 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri

Abstract:

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
1590 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1589 Knowing Where the Learning Is a Shift from Summative to Formative Assessment

Authors: Eric Ho

Abstract:

Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.

Keywords: Formative assessment, higher education, learning styles, Confucian heritage culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1588 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach

Authors: Ashly Joseph, Jithu Paulose

Abstract:

In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.

Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87
1587 An Agent Oriented Architecture to Supply Dynamic Document Generation in ERP Systems

Authors: Hassan Haghighi, Seyedeh Zahra Hosseini, Seyedeh Elahe Jalambadani

Abstract:

One of the most important aspects expected from an ERP system is to mange user\administrator manual documents dynamically. Since an ERP package is frequently changed during its implementation in customer sites, it is often needed to add new documents and/or apply required changes to existing documents in order to cover new or changed capabilities. The worse is that since these changes occur continuously, the corresponding documents should be updated dynamically; otherwise, implementing the ERP package in the organization encounters serious risks. In this paper, we propose a new architecture which is based on the agent oriented vision and supplies the dynamic document generation expected from ERP systems using several independent but cooperative agents. Beside the dynamic document generation which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP.

Keywords: enterprise resource planning, dynamic documentgeneration, software architecture, agent oriented architecture, learning, intelligence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1586 Attitude Change after Taking a Virtual Global Understanding Course

Authors: Rosina C. Chia, Elmer Poe, Karl L. Wuensch

Abstract:

A virtual collaborative classroom was created at East Carolina University, using videoconference technology via regular internet to bring students from 18 different countries, 2 at a time, to the ECU classroom in real time to learn about each other-s culture. Students from two countries are partnered one on one, they meet for 4-5 weeks, and submit a joint paper. Then the same process is repeated for two other countries. Lectures and student discussions are managed with pre-determined topics and questions. Classes are conducted in English and reading assignments are placed on the website. Administratively all partners are independent, students pay fees and get credits at their home institution. Familiarity with technology, knowledge in cultural understanding and attitude change were assessed, only attitude changes are reported in this paper. After taking this course, all students stated their comfort level in working with, and their desire to interact with, culturally different others grew stronger and their xenophobia and isolationist attitudes decreased.

Keywords: Attitude change, interactive cultural learning, multicultural education, real time virtual learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1585 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: D. Hişam, S. İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.

Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
1584 E- Campus as an Environmental and Pedagogical Tool for Online Support

Authors: Shireen Panchoo

Abstract:

The Internet and the ever growing applications enable communities to share and collaborate through common platforms. However, this growing pattern is not witnessed yet even for elearning. This paper is based on a doctoral research which aimed at researching the ways students interact in an online campus and the supports that they look for and require. Content analysis, based on the Panchoo/Jaillet methodology, was done on four synchronous meetings between a tutor and his ten students. The UNIV-Rct ecampus, analogical to a physical campus, was found to be user friendly and the students enrolled in a master-s course faced no difficulties in using it. In addition to the environmental aspects, the pedagogical implementation of the course has driven the students to interact and collaborate significantly and this has contributed to overcome the problems faced by the distance learners. This completely online model was found to be fruitful in helping distant learners fight their loneliness and brave their difficulties in a socioconstructivism approach.

Keywords: Content analysis, e-campus, interaction, online supports, pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1583 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
1582 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot

Abstract:

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
1581 How to Improve Teaching and Learning Strategies through Educational Research: An Experience of Peer Observation in Legal Education

Authors: L. Mortari, A. Bevilacqua, R. Silva

Abstract:

The experience presented in this paper aims to understand how educational research can support the introduction and optimization of teaching innovations in legal education. In this increasingly complex context, a strong need to introduce paths aimed at acquiring not only professional knowledge and skills but also reflective, critical and problem-solving skills emerges. Through a peer observation intertwined with an analysis of discursive practices, researchers and the teacher worked together through a process of participatory and transformative accompaniment whose objective was to promote the active participation and engagement of students in learning processes, an element indispensable to work in the more specific direction of strengthening key competences. This reflective faculty development path led the teacher to activate metacognitive processes, becoming thus aware of the strengths and areas of improvement of his teaching innovation.

Keywords: Discursive analysis, faculty development, legal education, peer observation, teaching innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
1580 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
1579 Searching for Similar Informational Articles in the Internet Channel

Authors: Sung Ho Ha, Seong Hyeon Joo, Hyun U. Pae

Abstract:

In terms of total online audience, newspapers are the most successful form of online content to date. The online audience for newspapers continues to demand higher-quality services, including personalized news services. News providers should be able to offer suitable users appropriate content. In this paper, a news article recommender system is suggested based on a user-s preference when he or she visits an Internet news site and reads the published articles. This system helps raise the user-s satisfaction, increase customer loyalty toward the content provider.

Keywords: Content classification, content recommendation, customer profiling, documents clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1578 Apoptosis Inspired Intrusion Detection System

Authors: R. Sridevi, G. Jagajothi

Abstract:

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1577 The Predictability and Abstractness of Language: A Study in Understanding and Usage of the English Language through Probabilistic Modeling and Frequency

Authors: Revanth Sai Kosaraju, Michael Ramscar, Melody Dye

Abstract:

Accounts of language acquisition differ significantly in their treatment of the role of prediction in language learning. In particular, nativist accounts posit that probabilistic learning about words and word sequences has little to do with how children come to use language. The accuracy of this claim was examined by testing whether distributional probabilities and frequency contributed to how well 3-4 year olds repeat simple word chunks. Corresponding chunks were the same length, expressed similar content, and were all grammatically acceptable, yet the results of the study showed marked differences in performance when overall distributional frequency varied. It was found that a distributional model of language predicted the empirical findings better than a number of other models, replicating earlier findings and showing that children attend to distributional probabilities in an adult corpus. This suggested that language is more prediction-and-error based, rather than on abstract rules which nativist camps suggest.

Keywords: Abstractness, child psychology, language acquisition, prediction and error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
1576 A Case Study: Experiences with Building an Online Exhibition System using Web Services

Authors: Atakan Kurt, Arzu Naiboğlu

Abstract:

We present an implementation of an Online Exhibition System (OES) web service(s) that reflects our experiences with using web service development packages and software process models. The system provides major functionality that exists in similar packages. While developing such a complex web service, we gained insightful experience (i) in the traditional software development processes: waterfall model and evolutionary development and their fitness to web services development, (ii) in the fitness and effectiveness of a major web services development kit.

Keywords: Web Services, Online Exhibition System, Software Engineering, Waterfall Model, e-business.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1575 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1574 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375