Search results for: Numerical solution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4493

Search results for: Numerical solution.

3293 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
3292 Effect of Rotation Rate on Chemical Segragation during Phase Change

Authors: Nouri Sabrina, Benzeghiba Mohamed, Ghezal Abderrahmane

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical bridgman (vb) crystal growth. Calculations were performed in unsteady state. The extended darcy model, which includes the time derivative and coriolis terms, has been employed in the momentum equation. It’s found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: Numerical Simulation, Heat and mass transfer, vertical solidification, chemical segregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
3291 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm

Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll

Abstract:

This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.

Keywords: Concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
3290 Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

Keywords: Impinging jet, Numerical simulation, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
3289 Sinusoidal Roughness Elements in a Square Cavity

Authors: M. Yousaf, S. Usman

Abstract:

Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm based on a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 10^3 to 10^6 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was 16.66 percent at Ra number 10^5.

Keywords: Lattice Boltzmann Method Natural convection, Nusselt Number Rayleigh number, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
3288 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator

Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith

Abstract:

Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na2SiO3) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80 ºC in an oven for approximately 24 h. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71 MPa and 47.26 MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79 MPa and 43.48 MPa after 7 and 28 days, respectively. Therefore, GPC containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO2 emitted into the atmosphere in the construction industry.

Keywords: Alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
3287 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
3286 Proactive Identification of False Alert for Drug-Drug Interaction

Authors: Hsuan-Chia Yang, Yan-Jhih Haung, Yu-Chuan Li

Abstract:

Researchers of drug-drug interaction alert systems have often suggested that there were high overridden rate for alerts and also too false alerts. However, research about decreasing false alerts is scant. Therefore, the aim of this article attempts to proactive identification of false alert for drug-drug interaction and provide solution to decrease false alerts. This research involved retrospective analysis prescribing database and calculated false alert rate by using MYSQL and JAVA. Results of this study showed 17% of false alerts and the false alert rate in the hospitals (37%) was more than in the clinics. To conclude, this study described the importance that drug-drug interaction alert system should not only detect drug name but also detect frequency or route, as well as in providing solution to decrease false alerts.

Keywords: drug-drug interaction, proactive identification, false alert

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
3285 The Adsorption of Lead from Aqueous Solutions Using Coal Fly Ash : Effect of Crystallinity

Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa

Abstract:

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward lead adsorption capacity was investigated. To get solid with various crystallinity, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperature and reflux time. Furthermore, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the treated CFA were examine as adsorbent for removing lead in the solution. The result shows that using NaOH to treat CFA causes crystallinity of quartz and mullite decrease. At higher NaOH concentration (>3M), in addition the damage of quartz and mullite crystallinity is followed by crystal formation called hydroxysodalite. The lower crystalllinity, the higher adsorption capacity.

Keywords: Coal fly ash, crystallinity, lead, adsorption capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3284 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Ángel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: Demand Forecasting, Empirical Distribution, Propagation of Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
3283 Removal of Chromium from Aqueous Solution using Synthesized Polyaniline in Acetonitrile

Authors: Majid Riahi Samani, Seyed Mehdi Borghei

Abstract:

Absorptive characteristics of polyaniline synthesized in mixture of water and acetonitrile in 50/50 volume ratio was studied. Synthesized polyaniline in powder shape is used as an adsorbent to remove toxic hexavalent chromium from aqueous solutions. Experiments were conducted in batch mode with different variables such as agitation time, solution pH and initial concentration of hexavalent chromium. Removal mechanism is the combination of surface adsorption and reduction. The equilibrium time for removal of Cr(T) and Cr(VI) was about 2 and 10 minutes respectively. The optimum pH for total chromium removal occurred at pH 7 and maximum hexavalent chromium removal took place under acidic condition at pH 3. Investigating the isothermal characteristics showed that the equilibrium adsorption data fitted both Freundlich-s and Langmuir-s isotherms. The maximum adsorption of chromium was calculated 36.1 mg/g for polyaniline

Keywords: Polyaniline, Chromium, acetonitrile, Adsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
3282 ATM Service Analysis Using Predictive Data Mining

Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan

Abstract:

The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.

Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5608
3281 Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates

Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy

Abstract:

The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.

Keywords: Vibrations, Step by Step Integration, Stepped plate, Boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
3280 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Authors: Sameh H. Ghwanmeh

Abstract:

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Keywords: Education, networking, performance, e-content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
3279 Numerical Investigation of a Slender Delta Wing in Combined Force-Pitch and Free-Roll

Authors: Yang Xiaoliang, Liu Wei, Wang Hongbo, Zhao Yunfei

Abstract:

Numerical investigation of the characteristics of an 80° delta wing in combined force-pitch and free-roll is presented. The implicit, upwind, flux-difference splitting, finite volume scheme and the second-order-accurate finite difference scheme are employed to solve the flow governing equations and Euler rigid-body dynamics equations, respectively. The characteristics of the delta wing in combined free-roll and large amplitude force-pitch is obtained numerically and shows a well agreement with experimental data qualitatively. The motion in combined force-pitch and free-roll significantly reduces the lift force and transverse stabilities of the delta wing, which is closely related to the flying safety. Investigations on sensitive factors indicate that the roll-axis moment of inertia and the structural damping have great influence on the frequency and amplitude, respectively. Moreover, the turbulence model is considered as an influencing factor in the investigation.

Keywords: combined force-pitch and free-roll, numericalsimulation, sensitive factors, slender delta wing, wing rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
3278 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo

Abstract:

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
3277 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: Finite element, Lagrangian, optimal stress location, serendipity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
3276 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846
3275 Accurate Time Domain Method for Simulation of Microstructured Electromagnetic and Photonic Structures

Authors: Vijay Janyani, Trevor M. Benson, Ana Vukovic

Abstract:

A time-domain numerical model within the framework of transmission line modeling (TLM) is developed to simulate electromagnetic pulse propagation inside multiple microcavities forming photonic crystal (PhC) structures. The model developed is quite general and is capable of simulating complex electromagnetic problems accurately. The field quantities can be mapped onto a passive electrical circuit equivalent what ensures that TLM is provably stable and conservative at a local level. Furthermore, the circuit representation allows a high level of hybridization of TLM with other techniques and lumped circuit models of components and devices. A photonic crystal structure formed by rods (or blocks) of high-permittivity dieletric material embedded in a low-dielectric background medium is simulated as an example. The model developed gives vital spatio-temporal information about the signal, and also gives spectral information over a wide frequency range in a single run. The model has wide applications in microwave communication systems, optical waveguides and electromagnetic materials simulations.

Keywords: Computational Electromagnetics, Numerical Simulation, Transmission Line Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
3274 Investigation of Buoyant Parameters of k-ε Turbulence Model in Gravity Stratified Flows

Authors: A. Majid Bahari, Kourosh Hejazi

Abstract:

Different variants for buoyancy-affected terms in k-ε turbulence model have been utilized to predict the flow parameters more accurately, and investigate applicability of alternative k-ε turbulence buoyant closures in numerical simulation of a horizontal gravity current. The additional non-isotropic turbulent stress due to buoyancy has been considered in production term, based on Algebraic Stress Model (ASM). In order to account for turbulent scalar fluxes, general gradient diffusion hypothesis has been used along with Boussinesq gradient diffusion hypothesis with a variable turbulent Schmidt number and additional empirical constant c3ε.To simulate buoyant flow domain a 2D vertical numerical model (WISE, Width Integrated Stratified Environments), based on Reynolds- Averaged Navier-Stokes (RANS) equations, has been deployed and the model has been further developed for different k-ε turbulence closures. Results are compared against measured laboratory values of a saline gravity current to explore the efficient turbulence model.

Keywords: Buoyant flows, Buoyant k-ε turbulence model, saline gravity current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3901
3273 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.

Keywords: Mathematical model, Oil-Water, Pipe flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
3272 Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).

Keywords: Fighter Aircraft, Fighter Aircraft Selection, Technique for Order Preference by Similarity to Ideal Solution, TOPSIS, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA, Su-35, F-35, TF-X (MMU)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
3271 Methanol Concentration Sensitive SWCNT/Nafion Composites

Authors: Kyongsoo Lee, , Seong-Il Kim, Byeong-Kwon Ju

Abstract:

An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.

Keywords: methanol concentration, SWCNT, nafion composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
3270 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
3269 Human Body Configuration using Bayesian Model

Authors: Rui. Zhang, Yiming. Pi

Abstract:

In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.

Keywords: Bayesian framework, MCMC, model based, human body configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
3268 Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations

Authors: Yanru Wu, Qing Sun

Abstract:

Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.

Keywords: Aerostatic nonlinearity, cable-stayed pedestrian bridge, numerical simulation, nonlinear aerostatic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
3267 Examination of Flood Runoff Reproductivity for Different Rainfall Sources in Central Vietnam

Authors: Do Hoai Nam, Keiko Udo, Akira Mano

Abstract:

This paper presents the combination of different precipitation data sets and the distributed hydrological model, in order to examine the flood runoff reproductivity of scattered observation catchments. The precipitation data sets were obtained from observation using rain-gages, satellite based estimate (TRMM), and numerical weather prediction model (NWP), then were coupled with the super tank model. The case study was conducted in three basins (small, medium, and large size) located in Central Vietnam. Calculated hydrographs based on ground observation rainfall showed best fit to measured stream flow, while those obtained from TRMM and NWP showed high uncertainty of peak discharges. However, calculated hydrographs using the adjusted rainfield depicted a promising alternative for the application of TRMM and NWP in flood modeling for scattered observation catchments, especially for the extension of forecast lead time.

Keywords: Flood forecast, rainfall-runoff model, satellite rainfall estimate, numerical weather prediction, quantitative precipitation forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
3266 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
3265 Recent Developments in Electric Vehicles for Passenger Car Transport

Authors: Amela Ajanovic

Abstract:

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

Keywords: Costs, fuel intensity, electric vehicles, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
3264 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055