Search results for: Discrete Wavelet Transform
102 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175101 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame
Authors: Caighley Logan, Suzzanne McColl
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.
Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222100 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68299 Optical Limiting Characteristics of Core-Shell Nanoparticles
Authors: G.Vinitha, A.Ramalingam
Abstract:
TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182298 Principle Components Updates via Matrix Perturbations
Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook
Abstract:
This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X ∈ R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104197 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: Dynamic modeling, missing data, multiple imputation, physiological measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81596 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates
Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras
Abstract:
Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.
Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83695 Transformability in Post-Earthquake Houses in Iran: with Special Focus on Lar City
Authors: M. Parva, K. Dola, F. Pour Rahimian
Abstract:
Earthquake is considered as one of the most catastrophic disasters in Iran, in terms of both short-term and long-term hazards. Due to the particular financial and time constraints in Iran, quickly constructed post-earthquake houses (PEHs) do not fulfill the minimum requirements to be considered as comfortable dwellings for people. Consequently, people often transform PEHs after they start to reside. However, lack of understanding about process, motivation, and results of housing transformation leads to construction of some houses not suitable for future transformations, hence resulting in eventually demolished or abandoned PEHs. This study investigated housing transformations in a natural bed of post-earthquake Lar. This paper reports results of the conducted survey for comparing normal condition housing transformation with post-earthquake housing transformation in order to reveal the factors that affect post-earthquake housing transformation in Iran. The findings proposed the use of a combination of ‘Temporary’ and ‘Permanent’ housing reconstruction models in Iran to provide victims with basic but permanent post-disaster dwellings. It is also suggested that needs for future transformation should be predicted and addressed during early stages of design and development. This study contributes to both research and practice regarding post-earthquake housing reconstruction in Iran by proposing new design approaches and guidelines.
Keywords: Housing transformation, Iran, Lar, post-earthquake housing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188194 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface
Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra
Abstract:
Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.
Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249293 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.
Keywords: Game-based learning, knowledge based engineering, product modelling, design automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75492 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.
Keywords: Temple painting, painting material, conservation, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128091 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
Authors: Sumathi Poobal, G. Ravindran
Abstract:
Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.Keywords: DCT, FIC, PIFS, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183390 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA) and xylitol (X). The Differential Scanning Calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52 °C, 20.37 °C, and 22.18 °C, respectively. The latent heat of phase change of the ternary eutectic PCMs were all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.
Keywords: Thermal energy storage, buildings, phase change materials, alcohols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30089 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389188 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.
Keywords: Search path planning, false alarm, search-and-delivery, entropy, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197287 The Influence of Travel Experience within Perceived Public Transport Quality
Authors: Armando Cartenì, Ilaria Henke
Abstract:
The perceived public transport quality is an important driver that influences both customer satisfaction and mobility choices. The competition among transport operators needs to improve the quality of the services and identify which attributes are perceived as relevant by passengers. Among the “traditional” public transport quality attributes there are, for example: travel and waiting time, regularity of the services, and ticket price. By contrast, there are some “non-conventional” attributes that could significantly influence customer satisfaction jointly with the “traditional” ones. Among these, the beauty/aesthetics of the transport terminals (e.g. rail station and bus terminal) is probably one of the most impacting on user perception. Starting from these considerations, the point stressed in this paper was if (and how munch) the travel experience of the overall travel (e.g. how long is the travel, how many transport modes must be used) influences the perception of the public transport quality. The aim of this paper was to investigate the weight of the terminal quality (e.g. aesthetic, comfort and service offered) within the overall travel experience. The case study was the extra-urban Italian bus network. The passengers of the major Italian terminal bus were interviewed and the analysis of the results shows that about the 75% of the travelers, are available to pay up to 30% more for the ticket price for having a high quality terminal. A travel experience effect was observed: the average perceived transport quality varies with the characteristic of the overall trip. The passengers that have a “long trip” (travel time greater than 2 hours) perceived as “low” the overall quality of the trip even if they pass through a high quality terminal. The opposite occurs for the “short trip” passengers. This means that if a traveler passes through a high quality station, the overall perception of that terminal could be significantly reduced if he is tired from a long trip. This result is important and if confirmed through other case studies, will allow to conclude that the “travel experience impact" must be considered as an explicit design variable for public transport services and planning.Keywords: Transportation planning, sustainable mobility, decision support system, discrete choice model, design problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118786 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22785 Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective
Authors: Swapnoneel Roy, Minhazur Rahman, Ashok Kumar Thakur
Abstract:
Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.Keywords: Sorting Primitives, Genome Rearrangements, Transpositions, Block Interchanges, Strip Exchanges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216584 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35883 GridNtru: High Performance PKCS
Authors: Narasimham Challa, Jayaram Pradhan
Abstract:
Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.Keywords: Alchemi, GridNtru, Ntru, PKCS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169582 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua
Abstract:
In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the assynthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p<0.0001, two way ANOVA), however, these were independent of TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p<0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.Keywords: Capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way ANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162181 Challenges and Opportunities of Utilization of Social Media by Business Education Students in Nigeria Universities
Authors: Titus Amodu Umoru
Abstract:
Global economy today is full of sophistication. All over the world, business and marketing practices are undergoing unprecedented transformation. In realization of this fact, the federal government of Nigeria has put in place a robust transformation agenda in order to put Nigeria in a better position to be a competitive player and in the process transform all sectors of its economy. New technologies, especially the Internet, are the driving force behind this transformation. However, technology has inadvertently affected the way businesses are done thus necessitating the acquisition of new skills. In developing countries like Nigeria, citizens are still battling with effective application of those technologies. Obviously, students of business education need to acquire relevant business knowledge to be able to transit into the world of work on graduation from school and compete favorably in the labor market. Therefore, effective utilization of social media by both teachers and students can help extensively in empowering students with the needed skills. Social media which is a group of Internet-based applications built on the ideological foundations of Web 2.0, that allow the creation and exchange of user generated content, and if incorporated into the classroom experience may be the needed answer to unemployment and poverty in Nigeria as beneficiaries can easily connect with existing and potential enterprises and customers, engage with them and reinforce mutual business benefits. Challenges and benefits of social media use in education in Nigeria universities were revealed in this study.Keywords: Challenges, opportunities, utilization, social media, business education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359580 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method
Authors: N. Outili, A-H. Meniai
Abstract:
Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169379 Dynamic Behavior of Brain Tissue under Transient Loading
Authors: Y. J. Zhou, G. Lu
Abstract:
In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.
Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226578 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network
Authors: Abed Sami Qawasme, Sameer Khader
Abstract:
This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.
Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62077 Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field
Authors: Nan-Chyuan Tsai, Chao-Wen Chiang, Bai-Lu Wang
Abstract:
The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.Keywords: Sliding Mode Control, Singular Perturbation, Variable Inertia Flywheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145976 Integration of Virtual Learning of Induction Machines for Undergraduates
Authors: Rajesh Kumar, Puneet Aggarwal
Abstract:
In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.
Keywords: Block rotor test, DC test, no-load test, virtual environment, VSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88975 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties
Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari
Abstract:
Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.
Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245274 Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice
Authors: Ruchi Vyas, Sanjay Singh, Rashmi Sisodia
Abstract:
Chlorophytum borivillianum root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV–visible analysis (UV–vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of CB-AgNPs in testicular constituents against gamma irradiation in mice.
Keywords: Chlorophytum borivillianum, gamma radiation, radioprotective, silver nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95173 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553