Search results for: Discontinuous Fuel Cost
1513 LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation
Authors: Arjun Jain, Himanshu Agrawal, Nalini Vasudevan
Abstract:
In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.Keywords: PC cluster, parallel computations, ray tracing, persistence of vision, rendering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15521512 Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator
Authors: Bindu Sankar, Jaideep Chakraborty, Rashmi Nawlakha, A. Venkatesan, S. Raghupathy, T. Jayanthi, S.A.V. Satya Murty
Abstract:
Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.
Keywords: Animation, Core Handling System, Prototype Fast Breeder Reactor, Simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091511 Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine
Authors: M. Venkatesan, N. Shenbaga Vinayaga Moorthi, R. Karthikeyan, A. Manivannan
Abstract:
Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.
Keywords: Hydrous Methanol, Dimethyl ether, Performance, Emission and Combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25041510 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal
Abstract:
In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: Automotive industry, control plan, FMEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28751509 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.
Keywords: Bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7661508 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives
Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer
Abstract:
As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.Keywords: Adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24131507 Effect of Modification and Expansion on Emergence of Cooperation in Demographic Multi-Level Donor-Recipient Game
Authors: Tsuneyuki Namekata, Yoko Namekata
Abstract:
It is known that the mean investment evolves from a very low initial value to some high level in the Continuous Prisoner's Dilemma. We examine how the cooperation level evolves from a low initial level to a high level in our Demographic Multi-level Donor-Recipient situation. In the Multi-level Donor-Recipient game, one player is selected as a Donor and the other as a Recipient randomly. The Donor has multiple cooperative moves and one defective move. A cooperative move means the Donor pays some cost for the Recipient to receive some benefit. The more cooperative move the Donor takes, the higher cost the Donor pays and the higher benefit the Recipient receives. The defective move has no effect on them. Two consecutive Multi-level Donor-Recipient games, one as a Donor and the other as a Recipient, can be viewed as a discrete version of the Continuous Prisoner's Dilemma. In the Demographic Multi-level Donor-Recipient game, players are initially distributed spatially. In each period, players play multiple Multi-level Donor-Recipient games against other players. He leaves offspring if possible and dies because of negative accumulated payoff of him or his lifespan. Cooperative moves are necessary for the survival of the whole population. There is only a low level of cooperative move besides the defective move initially available in strategies of players. A player may modify and expand his strategy by his recent experiences or practices. We distinguish several types of a player about modification and expansion. We show, by Agent-Based Simulation, that introducing only the modification increases the emergence rate of cooperation and introducing both the modification and the expansion further increases it and a high level of cooperation does emerge in our Demographic Multi-level Donor-Recipient Game.
Keywords: Agent-based simulation, donor-recipient game, emergence of cooperation, spatial structure, TFT, TF2T.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8751506 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3861505 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator
Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh
Abstract:
In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39811504 A Carbon Footprint Analysis of Rapeseed Oil and Rapeseed Methyl Ester Produced in Romania as Fuels for Diesel Engines
Authors: R-C.Buturca, C. Gasol, D. Scarpete, X. Gabarrell
Abstract:
Considering the increasing need of biofuels in Europe and the legislative requirements of the European Union it is needed to quantify the greenhouse gas emissions of biofuels life cycle. In this article a carbon footprint analysis to quantify these gases emitted during production and use of Romanian rapeseed oil (RO) and biodiesel from rapeseed oil (RME) was conducted. The functional unit was considered the LHV of diesel oil of 42.8 MJ·kg-1 corresponding to 1.15kg. of RO and 1.10 kg. of RME. When the 3 fuels were compared, the results show important benefits when using rapeseed oil or biodiesel instead of diesel. The most impacting stage in terms of GHG emissions is the use of the fuels. In this stage, rapeseed oil registers a total quantity of 3,229 kg CO2eq.·FU-1 and biodiesel register a total quantity of 3,088 kg CO2eq.·FU-1 while mineral diesel registers a total quantity of 3,156 kg CO2eq.·FU-1 emitted in the air. Taking into account that rape plant absorbed during growth stage the same quantity of CO2 as emitted into atmosphere during usage stage of the fuel, when compared the three fuels, rapeseed oil and biodiesel obtain obvious benefits against fossil diesel. Results show that by substituting diesel with RO a total quantity of 5,663 kg. CO2eq.·FU-1 would be saved while using biodiesel a total quantity of 5,570 kg. CO2eq.·FU-1 can be saved.
Keywords: Biodiesel, carbon footprint, rapeseed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37601503 Some Issues with Extension of an HPC Cluster
Authors: Pil Seong Park
Abstract:
Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.
Keywords: Extension of HPC clusters, Security, NFS, SSH tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981502 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh
Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu
Abstract:
This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs
Keywords: Agriculture, energy indicator, system dynamics, energy flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25721501 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls
Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah
Abstract:
In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.
Keywords: Boundary layer profile, fire whirls, near-ground height, vortex interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6741500 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.
Keywords: Beams, Composites, Constant Stress, Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43931499 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.
Keywords: Scalable Architectures, Sustainability, Application Design, Disruptive Technology, Machine Learning, Natural Language Processing, AI, Social Media Platform, Cloud Computing, Advanced Networking, Storage Devices, Advanced Monitoring, Metering Infrastructure, Climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611498 A Base Plan for Tomorrow’s Patient Care Information Systems
Authors: M. Tsirintani
Abstract:
The article is proposing a base plan for the future Patient Care Information Systems in a changing health care environment where it is necessary to assure quality patient care services and reducing cost and where new technology trends give the opportunities to develop clinical applications and services patient focused according to new business objectives.
Keywords: Health care management, planning patient care information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18081497 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.
Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12631496 LCA/CFD Studies of Artisanal Brick Manufacture in Mexico
Authors: H. A. Lopez-Aguilar, E. A. Huerta-Reynoso, J. A. Gomez, J. A. Duarte-Moller, A. Perez-Hernandez
Abstract:
Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system.
Keywords: LCA, CFD, brick, artisanal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751495 Environmental Efficiency of Electric Power Industry of the United States: A Data Envelopment Analysis Approach
Authors: Alexander Y. Vaninsky
Abstract:
Importance of environmental efficiency of electric power industry stems from high demand for energy combined with global warming concerns. It is especially essential for the world largest economies like that of the United States. The paper introduces a Data Envelopment Analysis (DEA) model of environmental efficiency using indicators of fossil fuels utilization, emissions rate, and electric power losses. Using DEA is advantageous in this situation over other approaches due to its nonparametric nature. The paper analyzes data for the period of 1990 - 2006 by comparing actual yearly levels in each dimension with the best values of partial indicators for the period. As positive factors of efficiency, tendency to the decline in emissions rates starting 2000, and in electric power losses starting 2004 may be mentioned together with increasing trend of fuel utilization starting 1999. As a result, dynamics of environmental efficiency is positive starting 2002. The main concern is the decline in fossil fuels utilization in 2006. This negative change should be reversed to comply with ecological and economic requirements.
Keywords: Environmental efficiency, electric power industry, DEA, United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051494 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.
Keywords: Reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8101493 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene
Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen
Abstract:
A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.Keywords: CdS quantum dots, modification, detection, naphthalene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741492 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold
Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg
Abstract:
The applications of composite materials within the aviation industry has been increasing at a rapid pace. However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.
Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7081491 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.
Keywords: Improved QoE, OpenFlow SDN controller, IPTV service application, softwarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10301490 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study
Authors: Sunday Olufemi Adesogan
Abstract:
The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.
Keywords: Operational, efficiency, production, supply, water treatment plant, water loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7241489 Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray
Authors: E. Movahednejad, F. Ommi
Abstract:
Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.Keywords: Droplet, instability, Size Distribution, Turbulence, Maximum Entropy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25801488 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement
Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo
Abstract:
The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.
Keywords: Energy efficient system, exoskeleton, motion enhancement, robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18691487 Thermo-mechanical Behavior of Pressure Tube of Indian PHWR at 20 bar Pressure
Authors: Gopal Nandan, P. K. Sahooa, Ravi Kumara, B Chatterjeeb, D. Mukhopadhyayb, H. G. Leleb
Abstract:
In a nuclear reactor Loss of Coolant accident (LOCA) considers wide range of postulated damage or rupture of pipe in the heat transport piping system. In the case of LOCA with/without failure of emergency core cooling system in a Pressurised Heavy water Reactor, the Pressure Tube (PT) temperature could rise significantly due to fuel heat up and gross mismatch of the heat generation and heat removal in the affected channel. The extent and nature of deformation is important from reactor safety point of view. Experimental set-ups have been designed and fabricated to simulate ballooning (radial deformation) of PT for 220 MWe IPHWRs. Experiments have been conducted by covering the CT by ceramic fibers and then by submerging CT in water of voided PTs. In both the experiments, it is observed that ballooning initiates at a temperature around 665´┐¢C and complete contact between PT and Caldaria Tube (CT) occurs at around 700´┐¢C approximately. The strain rate is found to be 0.116% per second. The structural integrity of PT is retained (no breach) for all the experiments. The PT heatup is found to be arrested after the contact between PT and CT, thus establishing moderator acting as an efficient heat sink for IPHWRs.Keywords: Pressure Tube, Calandria Tube, Thermo-mechanicaldeformation, Boiling heat transfer, Reactor safety
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22251486 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment
Authors: Beena Sethi
Abstract:
This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.
Keywords: Degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis. DSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21561485 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials
Authors: P. Ninduangdee, V. I. Kuprianov
Abstract:
Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behavior of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.
Keywords: Palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30391484 Architecture Integrating Wireless Body Area Networks with Web Services for Ubiquitous Healthcare Service Provisioning
Authors: Ogunduyile O. Oluwgbenga
Abstract:
Recent advancements in sensor technologies and Wireless Body Area Networks (WBANs) have led to the development of cost-effective healthcare devices which can be used to monitor and analyse a person-s physiological parameters from remote locations. These advancements provides a unique opportunity to overcome current healthcare challenges of low quality service provisioning, lack of easy accessibility to service varieties, high costs of services and increasing population of the elderly experienced globally. This paper reports on a prototype implementation of an architecture that seamlessly integrates Wireless Body Area Network (WBAN) with Web services (WS) to proactively collect physiological data of remote patients to recommend diagnostic services. Technologies based upon WBAN and WS can provide ubiquitous accessibility to a variety of services by allowing distributed healthcare resources to be massively reused to provide cost-effective services without individuals physically moving to the locations of those resources. In addition, these technologies can reduce costs of healthcare services by allowing individuals to access services to support their healthcare. The prototype uses WBAN body sensors implemented on arduino fio platforms to be worn by the patient and an android smart phone as a personal server. The physiological data are collected and uploaded through GPRS/internet to the Medical Health Server (MHS) to be analysed. The prototype monitors the activities, location and physiological parameters such as SpO2 and Heart Rate of the elderly and patients in rehabilitation. Medical practitioners would have real time access to the uploaded information through a web application.Keywords: Android Smart phone, Arduino Fio, Web application server, Wireless Body Area Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544