Search results for: Deregulated Distribution Network
3277 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15003276 Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test
Authors: Ayesha S. Rahman, Khaled Haddad, Ataur Rahman
Abstract:
At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. This finding needs to be confirmed with a greater number of stations across other Australian states.
Keywords: Floods, FLIKE, probability distributions, flood frequency, outlier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33163275 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution
Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie
Abstract:
Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20223274 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3563273 Advancing the Hi-Tech Ecosystem in the Periphery: The Case of the Sea of Galilee Region
Authors: Yael Dubinsky, Orit Hazzan
Abstract:
There is a constant need for hi-tech innovation to be decentralized to peripheral regions. This work describes how we applied Design Science Research (DSR) principles to define what we refer to as the Sea of Galilee (SoG) method. The goal of the SoG method is to harness existing and new technological initiatives in peripheral regions to create a socio-technological network that can initiate and maintain hi-tech activities. The SoG method consists of a set of principles, a stakeholder network, and actual hi-tech business initiatives, including their infrastructure and practices. The three cycles of DSR, the Relevance, Design, and Rigor cycles, lay out a research framework to sharpen the requirements, collect data from case studies, and iteratively refine the SoG method based on the existing knowledge base. We propose that the SoG method can be deployed by regional authorities that wish to be considered as smart regions (an extension of the notion of smart cities).
Keywords: Design Science Research, socio-technological initiatives, Sea of Galilee method, periphery stakeholder network, hi-tech initiatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263272 Decoy-pulse Protocol for Frequency-coded Quantum Key Distribution
Authors: Sudeshna Bhattacharya, Pratyush Pandey, Pradeep Kumar K
Abstract:
We propose a decoy-pulse protocol for frequency-coded implementation of B92 quantum key distribution protocol. A direct extension of decoy-pulse method to frequency-coding scheme results in security loss as an eavesdropper can distinguish between signal and decoy pulses by measuring the carrier photon number without affecting other statistics. We overcome this problem by optimizing the ratio of carrier photon number of decoy-to-signal pulse to be as close to unity as possible. In our method the switching between signal and decoy pulses is achieved by changing the amplitude of RF signal as opposed to modulating the intensity of optical signal thus reducing system cost. We find an improvement by a factor of 100 approximately in the key generation rate using decoy-state protocol. We also study the effect of source fluctuation on key rate. Our simulation results show a key generation rate of 1.5×10-4/pulse for link lengths up to 70km. Finally, we discuss the optimum value of average photon number of signal pulse for a given key rate while also optimizing the carrier ratio.
Keywords: B92, decoy-pulse, frequency-coding, quantum key distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17293271 The Possibility-Probability Relationship for Bloodstream Concentrations of Physiologically Active Substances
Authors: Arkady Bolotin
Abstract:
If a possibility distribution and a probability distribution are describing values x of one and the same system or process x(t), can they relate to each other? Though in general the possibility and probability distributions might be not connected at all, we can assume that in some particular cases there is an association linked them. In the presented paper, we consider distributions of bloodstream concentrations of physiologically active substances and propose that the probability to observe a concentration x of a substance X can be produced from the possibility of the event X = x . The proposed assumptions and resulted theoretical distributions are tested against the data obtained from various panel studies of the bloodstream concentrations of the different physiologically active substances in patients and healthy adults as well.Keywords: Possibility distributions, possibility-probability relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11933270 Power Flow Control with UPFC in Power Transmission System
Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri
Abstract:
In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42933269 The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel
Authors: Justinian Anatory, N. Theethayi, R. Thottappillil, C. Mwase, N.H. Mvungi
Abstract:
Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.
Keywords: Communication channel model, Power-line communication, Transfer function, Multipath, Branched network, OFDM, QAM, performance evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18503268 Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method
Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai
Abstract:
This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.Keywords: Electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21123267 A Brief Study about Nonparametric Adherence Tests
Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim
Abstract:
The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.Keywords: Kolmogorov-Smirnov, Anderson-Darling, Cramer-Von-Mises, Nonparametric adherence tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18453266 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments
Authors: Yi-Chun Chang, Jian-Wei Li
Abstract:
Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.
Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14623265 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network
Authors: K. Rajasekaran, Kannan Balasubramanian
Abstract:
A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17253264 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6693263 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5163262 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16753261 Signature Recognition Using Conjugate Gradient Neural Networks
Authors: Jamal Fathi Abu Hasna
Abstract:
There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16403260 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title
Authors: J. Moshtagh, L. Eslami
Abstract:
Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.
Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15833259 Performance Evaluation of Faculties of Islamic Azad University of Zahedan Branch Based-On Two-Component DEA
Authors: Ali Payan
Abstract:
The aim of this paper is to evaluate the performance of the faculties of Islamic Azad University of Zahedan Branch based on two-component (teaching and research) decision making units (DMUs) in data envelopment analysis (DEA). Nowadays it is obvious that most of the systems as DMUs do not act as a simple inputoutput structure. Instead, if they have been studied more delicately, they include network structure. University is such a network in which different sections i.e. teaching, research, students and office work as a parallel structure. They consume some inputs of university commonly and some others individually. Then, they produce both dependent and independent outputs. These DMUs are called two-component DMUs with network structure. In this paper, performance of the faculties of Zahedan branch is calculated by using relative efficiency model and also, a formula to compute relative efficiencies teaching and research components based on DEA are offered.
Keywords: Data envelopment analysis, faculties of Islamic Azad University of Zahedan branch, two-component DMUs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16643258 Modelling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution
Authors: Husna Hasan, Norfatin Salam, Mohd Bakri Adam
Abstract:
Extreme temperature of several stations in Malaysia is modelled by fitting the monthly maximum to the Generalized Extreme Value (GEV) distribution. The Mann-Kendall (MK) test suggests a non-stationary model. Two models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. Results show that half of the stations favour a model which is linear for the location parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.Keywords: Extreme temperature, extreme value, return level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28393257 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.
Keywords: Aeroelasticity, flutter, propeller blade force, whirl flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23393256 Model-Based Person Tracking Through Networked Cameras
Authors: Kyoung-Mi Lee, Youn-Mi Lee
Abstract:
This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.
Keywords: Person tracking, human model, networked cameras, vision-based surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14913255 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell
Authors: Narcis C. Ostahie, Tudor Sajin
Abstract:
In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16173254 Plasmodium Vivax Malaria Transmission in a Network of Villages
Authors: P. Pongsumpun, I. M. Tang
Abstract:
Malaria is a serious, acute and chronic relapsing infection to humans. It is characterized by periodic attacks of chills, fever, nausea, vomiting, back pain, increased sweating anemia, splenomegaly (enlargement of the spleen) and often-fatal complications.The malaria disease is caused by the multiplication of protozoa parasite of the genus Plasmodium. Malaria in humans is due to 4 types of malaria parasites such that Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. P.vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax malaria can experience relapses of the disease. Between the relapses, the malaria parasite will remain dormant in the liver of the patient, leading to the patient being classified as being in the dormant class. A mathematical model for the transmission of P. vivax is developed in which the human population is divided into four classes, the susceptible, the infected, the dormant and the recovered. In this paper, we formulate the dynamical model of P. vivax malaria to see the distribution of this disease at the district level.Keywords: Dynamical model, household, local level, Plasmodium Vivax Malaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13893253 Analysis of Wi-Fi Access Networks Situation in the City Area
Authors: A. Statkus, S. Paulikas
Abstract:
With increasing number of wireless devices like laptops, Wi-Fi Web Cams, network extenders, etc., a new kind of problems appeared, mostly related to poor Wi-Fi throughput or communication problems. In this paper an investigation on wireless networks and it-s saturation in Vilnius City and its surrounding is presented, covering the main problems of wireless saturation and network load during day. Also an investigation on wireless channel selection and noise levels were made, showing the impact of neighbor AP to signal and noise levels and how it changes during the day.Keywords: IEEE 802.11b/g/n, wireless saturation, client activity, channel selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16513252 Artificial Accelerated Ageing Test of 22 kVXLPE Cable for Distribution System Applications in Thailand
Authors: A. Rawangpai, B. Maraungsri, N. Chomnawang
Abstract:
This paper presents the experimental results on artificial ageing test of 22 kV XLPE cable for distribution system application in Thailand. XLPE insulating material of 22 kV cable was sliced to 60-70 μm in thick and was subjected to ac high voltage at 23 Ôùª C, 60 Ôùª C and 75 Ôùª C. Testing voltage was constantly applied to the specimen until breakdown. Breakdown voltage and time to breakdown were used to evaluate life time of insulating material. Furthermore, the physical model by J. P. Crine for predicts life time of XLPE insulating material was adopted as life time model and was calculated in order to compare the experimental results. Acceptable life time results were obtained from Crine-s model comparing with the experimental result. In addition, fourier transform infrared spectroscopy (FTIR) for chemical analysis and scanning electron microscope (SEM) for physical analysis were conducted on tested specimens.Keywords: Artificial accelerated ageing test, XLPE cable, distribution system, insulating material, life time, life time model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36813251 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7133250 A Trust Model using Fuzzy Logic in Wireless Sensor Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Adapting various sensor devices to communicate within sensor networks empowers us by providing range of possibilities. The sensors in sensor networks need to know their measurable belief of trust for efficient and safe communication. In this paper, we suggested a trust model using fuzzy logic in sensor network. Trust is an aggregation of consensus given a set of past interaction among sensors. We applied our suggested model to sensor networks in order to show how trust mechanisms are involved in communicating algorithm to choose the proper path from source to destination.Keywords: Fuzzy, Sensor Networks, Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35583249 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics
Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh
Abstract:
In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.
Keywords: Bond ball mill, population balance model, product size distribution, vertical stirred mill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11543248 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: Forced convection, Square cylinder, nanofluid, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369