Search results for: vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 393

Search results for: vision

303 Model-Based Person Tracking Through Networked Cameras

Authors: Kyoung-Mi Lee, Youn-Mi Lee

Abstract:

This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.

Keywords: Person tracking, human model, networked cameras, vision-based surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
302 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
301 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.

Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
300 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: End effect, structural-size torsion test, shear properties, timber engineering, binocular stereo vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
299 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation

Authors: Jagath Samarabandu, Xiaoqing Liu

Abstract:

Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.

Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
298 Post-Modernist Tragi-Comedy: A Study of Tom Stoppard’s Rosencrantz and Guildenstern Are Dead

Authors: Azza Taha Zaki

Abstract:

The death of tragedy is probably one of the most distinctive literary controversies of the twentieth century. There is common critical consent that tragedy in the classical sense of the word is no longer possible. Thinkers, philosophers and critics such as Nietzsche, Durrenmatt and George Steiner have all agreed that the decline of the genre in the modern age is due to the total lack of a unified world image and the absence of a shared vision in a fragmented and ideologically diversified world. The production of Rosencrantz and Guildenstern Are Dead in 1967 marked the rise of the genre of tragi-comedy as a more appropriate reflection of the spirit of the age. At the hands of such great dramatists as Tom Stoppard (1937- ), the revived genre was not used as an extra comic element to give some comic relief to an otherwise tragic text, but it was given a postmodernist touch to serve the interpretation of the dilemma of man in the postmodernist world. This paper will study features of postmodernist tragi-comedy in Rosencrantz and Guildenstern Are Dead as one of the most important plays in the modern British theatre and investigate Stoppard’s vision of man and life as influenced by postmodernist thought and philosophy.

Keywords: British, drama, postmodernist, Stoppard, tragi-comedy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
297 Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

Authors: Maohai Li, Bingrong Hong, Zesu Cai, Ronghua Luo

Abstract:

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2 N). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

Keywords: Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
296 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Thus, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Edge detection is one of the basic building blocks of video and image processing applications. It is a common block in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: High Level Synthesis, Canny edge detection, Hardware accelerators, and Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5430
295 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
294 Optical 3D-Surface Reconstruction of Weak Textured Objects Based on an Approach of Disparity Stereo Inspection

Authors: Thomas Kerstein, Martin Laurowski, Philipp Klein, Michael Weyrich, Hubert Roth, Jürgen Wahrburg

Abstract:

Optical 3D measurement of objects is meaningful in numerous industrial applications. In various cases shape acquisition of weak textured objects is essential. Examples are repetition parts made of plastic or ceramic such as housing parts or ceramic bottles as well as agricultural products like tubers. These parts are often conveyed in a wobbling way during the automated optical inspection. Thus, conventional 3D shape acquisition methods like laser scanning might fail. In this paper, a novel approach for acquiring 3D shape of weak textured and moving objects is presented. To facilitate such measurements an active stereo vision system with structured light is proposed. The system consists of multiple camera pairs and auxiliary laser pattern generators. It performs the shape acquisition within one shot and is beneficial for rapid inspection tasks. An experimental setup including hardware and software has been developed and implemented.

Keywords: automated optical inspection, depth from structured light, stereo vision, surface reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
293 A Novel Computer Vision Method for Evaluating Deformations of Fibers Cross Section in False Twist Textured Yarns

Authors: Dariush Semnani, Mehdi Ahangareianabhari, Hossein Ghayoor

Abstract:

In recent five decades, textured yarns of polyester fiber produced by false twist method are the most important and mass-produced manmade fibers. There are many parameters of cross section which affect the physical and mechanical properties of textured yarns. These parameters are surface area, perimeter, equivalent diameter, large diameter, small diameter, convexity, stiffness, eccentricity, and hydraulic diameter. These parameters were evaluated by digital image processing techniques. To find trends between production criteria and evaluated parameters of cross section, three criteria of production line have been adjusted and different types of yarns were produced. These criteria are temperature, drafting ratio, and D/Y ratio. Finally the relations between production criteria and cross section parameters were considered. The results showed that the presented technique can recognize and measure the parameters of fiber cross section in acceptable accuracy. Also, the optimum condition of adjustments has been estimated from results of image analysis evaluation.

Keywords: Computer Vision, Cross Section Analysis, Fibers Deformation, Textured Yarn

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
292 Using Mean-Shift Tracking Algorithms for Real-Time Tracking of Moving Images on an Autonomous Vehicle Testbed Platform

Authors: Benjamin Gorry, Zezhi Chen, Kevin Hammond, Andy Wallace, Greg Michaelson

Abstract:

This paper describes new computer vision algorithms that have been developed to track moving objects as part of a long-term study into the design of (semi-)autonomous vehicles. We present the results of a study to exploit variable kernels for tracking in video sequences. The basis of our work is the mean shift object-tracking algorithm; for a moving target, it is usual to define a rectangular target window in an initial frame, and then process the data within that window to separate the tracked object from the background by the mean shift segmentation algorithm. Rather than use the standard, Epanechnikov kernel, we have used a kernel weighted by the Chamfer distance transform to improve the accuracy of target representation and localization, minimising the distance between the two distributions in RGB color space using the Bhattacharyya coefficient. Experimental results show the improved tracking capability and versatility of the algorithm in comparison with results using the standard kernel. These algorithms are incorporated as part of a robot test-bed architecture which has been used to demonstrate their effectiveness.

Keywords: Hume, functional programming, autonomous vehicle, pioneer robot, vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
291 The Effect of Smartphones on Human Health Relative to User’s Addiction: A Study on a Wide Range of Audiences in Jordan

Authors: T. Qasim, M. Obeidat, S. Al-Sharairi

Abstract:

The objective of this study is to investigate the effect of the excessive use of smartphones. Smartphones have enormous effects on the human body in that some musculoskeletal disorders (MSDs) and health problems might evolve. These days, there is a wide use of the smartphones among all age groups of society, thus, the focus on smartphone effects on human behavior and health, especially on the young and elderly people, becomes a crucial issue. This study was conducted in Jordan on smartphone users for different genders and ages, by conducting a survey to collect data related to the symptoms and MSDs that are resulted from the excessive use of smartphones. A total of 357 responses were used in the analysis. The main related symptoms were numbness, fingers pain, and pain in arm, all linked to age and gender for comparative reasons. A statistical analysis was performed to find the effects of extensive usage of a smartphone for long periods of time on the human body. Results show that the significant variables were the vision problems and the time spent when using the smartphone that cause vision problems. Other variables including age of user and ear problems due to the use of the headsets were found to be a border line significant.

Keywords: Smartphone, age group, musculoskeletal disorders (MSDs), health problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
290 NDENet: End-to-End Nighttime Dehazing and Enhancement

Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout

Abstract:

In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.

Keywords: Dehazing, image enhancement, nighttime, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
289 Automated Testing of Workshop Robot Behavior

Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt

Abstract:

Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.

Keywords: Supervisory control, Testing, Markers, Mono Vision, Automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
288 Motivational Antecedents that Influenced a Higher Education Institution in the Philippines to Adopt Enterprise Architecture

Authors: Ma. Eliza Jijeth V. dela Cruz

Abstract:

Technology is a recent prodigy in people’s everyday life that has taken off. It infiltrated almost every aspect of one’s lives, changing how people work, how people learn and how people perceive things. Academic Institutions, just like other organizations, have deeply modified its strategies to integrate technology into the institutional vision and corporate strategy that has never been greater. Information and Communications Technology (ICT) continues to be recognized as a major factor in organizations realizing its aims and objectives. Consequently, ICT has an important role in the mobilization of an academic institution’s strategy to support the delivery of operational, strategic or transformational objectives. This ICT strategy should align the institution with the radical changes of the ICT world through the use of Enterprise Architecture (EA). Hence, EA’s objective is to optimize the islands of legacy processes to be integrated that is receptive to change and supportive of the delivery of the strategy. In this paper, the focus is to explore the motivational antecedents during the adoption of EA in a Higher Education Institution in the Philippines for its ICT strategic plan. The seven antecedents (viewpoint, stakeholders, human traits, vision, revolutionary innovation, techniques and change components) provide understanding into EA adoption and the antecedents that influences the process of EA adoption.

Keywords: Enterprise architecture, adoption, antecedents, higher education institution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
287 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: Computer vision, Siamese network, pose estimation, pose tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
286 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
285 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives

Authors: Dante Jose R. Amisola, Glenford M. Prospero

Abstract:

'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).

Keywords: De La Salle Lipa, Driving What’s Next, social innovation in quality education, DLSL mission - vision, strategic directions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
284 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
283 Choosing Local Organic Food: Consumer Motivations and Ethical Spaces

Authors: Artur Saraiva, Moritz von Schwedler, Emília Fernandes

Abstract:

In recent years, the organic sector has increased significantly. However, with the ‘conventionalization’ of these products, it has been questioned whether these products have been losing their original vision. Accordingly, this research based on 31 phenomenological interviews with committed organic consumers in urban and rural areas of Portugal, aims to analyse how ethical motivations and ecological awareness are related to organic food consumption. The content thematic analysis highlights aspects related to society and environmental concerns. On an individual level, the importance of internal coherence, peace of mind and balance that these consumers find in the consumption of local organic products was stressed. For these consumers, local organic products consumption made for significant changes in their lives, aiding in the establishment of a green identity, and involves a certain philosophy of life. This vision of an organic lifestyle is grounded in a political and ecological perspective, beyond the usual organic definition, as a ‘post-organic era’. The paper contributes to better understand how an ideological environmental discourse allows highlighting the relationship between consumers’ environmental concerns and the politics of food, resulting in a possible transition to new sustainable consumption practices.

Keywords: Organic consumption, localism, content thematic analysis, pro-environmental discourse, political consumption, Portugal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
282 Feature Based Dense Stereo Matching using Dynamic Programming and Color

Authors: Hajar Sadeghi, Payman Moallem, S. Amirhassn Monadjemi

Abstract:

This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.

Keywords: Chain Correspondence, Color Stereo Matching, Dynamic Programming, Epipolar Line, Stereo Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
281 An FPGA Implementation of Intelligent Visual Based Fall Detection

Authors: Peng Shen Ong, Yoong Choon Chang, Chee Pun Ooi, Ettikan K. Karuppiah, Shahirina Mohd Tahir

Abstract:

Falling has been one of the major concerns and threats to the independence of the elderly in their daily lives. With the worldwide significant growth of the aging population, it is essential to have a promising solution of fall detection which is able to operate at high accuracy in real-time and supports large scale implementation using multiple cameras. Field Programmable Gate Array (FPGA) is a highly promising tool to be used as a hardware accelerator in many emerging embedded vision based system. Thus, it is the main objective of this paper to present an FPGA-based solution of visual based fall detection to meet stringent real-time requirements with high accuracy. The hardware architecture of visual based fall detection which utilizes the pixel locality to reduce memory accesses is proposed. By exploiting the parallel and pipeline architecture of FPGA, our hardware implementation of visual based fall detection using FGPA is able to achieve a performance of 60fps for a series of video analytical functions at VGA resolutions (640x480). The results of this work show that FPGA has great potentials and impacts in enabling large scale vision system in the future healthcare industry due to its flexibility and scalability.

Keywords: Fall detection, FPGA, hardware implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
280 Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Authors: R.S.Sabeenian, V.Palanisamy

Abstract:

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Keywords: crop weed discrimination, MRCSF, MRFM, Weeddetection, Spatial Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
279 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro

Abstract:

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
278 Object Recognition on Horse Riding Simulator System

Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim

Abstract:

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
277 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
276 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma

Authors: Naoto Suzuki

Abstract:

Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.

Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
275 Integrating Context Priors into a Decision Tree Classification Scheme

Authors: Kasim Terzic, Bernd Neumann

Abstract:

Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.

Keywords: Classification, Decision Trees, Interpretation, Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
274 Offline Handwritten Signature Recognition

Authors: Gulzar A. Khuwaja, Mohammad S. Laghari

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images.

Keywords: Pattern Recognition, Computer Vision, AdaptiveClassification, Handwritten Signature Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901