Search results for: porous rotating disk.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 468

Search results for: porous rotating disk.

378 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
377 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modeling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: Hard Disk Drive, Dual-Stage Actuator, Track Following, HDD Servo Control, Sliding Mode Control, Model-Reference, Tracking Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
376 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: Axially moving beam, Galerkin method, non-linear vibration, super harmonic resonances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
375 Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell

Authors: Keiji Kimura, Shin-ichi Takehiro, Michio Yamada

Abstract:

We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 5002, respectively. The inertial moments of the inner and outer spheres are fixed to about 0.22 and 100, respectively. The Rayleigh number is varied from 2.6 × 104 to 3.4 × 104. In this parameter range, convective solutions transit from equatorially symmetric quasiperiodic ones to equatorially asymmetric chaotic ones as the Rayleigh number is increased. The transition route in the system allowing rotation of both the spheres is different from that in the co-rotating system, which means the inner and outer spheres rotate with the same constant angular velocity: the convective solutions transit as equatorially symmetric quasi-periodic solution → equatorially symmetric chaotic solution → equatorially asymmetric chaotic solution in the system allowing both the spheres rotation, while equatorially symmetric quasi-periodic solution → equatorially asymmetric quasiperiodic solution → equatorially asymmetric chaotic solution in the co-rotating system.

Keywords: thermal convection, numerical simulation, equatorial symmetry, quasi-periodic solution, chaotic solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
374 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou

Abstract:

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

Keywords: Mixed convection, porous medium, power generation, local thermal non equilibrium model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
373 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
372 Model of Obstacle Avoidance on Hard Disk Drive Manufacturing with Distance Constraint

Authors: Rawinun Praserttaweelap, Somyot Kiatwanidvilai

Abstract:

Obstacle avoidance is the one key for the robot system in unknown environment. The robots should be able to know their position and safety region. This research starts on the path planning which are SLAM and AMCL in ROS system. In addition, the best parameters of the obstacle avoidance function are required. In situation on Hard Disk Drive Manufacturing, the distance between robots and obstacles are very serious due to the manufacturing constraint. The simulations are accomplished by the SLAM and AMCL with adaptive velocity and safety region calculation.

Keywords: Obstacle avoidance, simultaneous localization and mapping, adaptive Monte Carlo localization, KLD sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
371 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
370 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

Authors: A. Ja, J. Belabid, A. Cheddadi

Abstract:

This paper reports the numerical simulation of doublediffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Keywords: Natural convection, double-diffusion, porous medium, annular geometry, finite differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
369 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model

Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim

Abstract:

Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL’s finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number (Ra = 10^5, and Ra = 10^6 ), Darcy namber (Da = 10^−2, and Da = 10^−3), the modified thermal conductivity ratio (10^−1 ≤ γ ≤ 10^4), the inter-phase heat transfer coefficien (10^−1 ≤ H ≤ 10^3) and the time dependent (0.001 ≤ τ ≤ 0.2). The results presented for values of the governing parameters in terms of streamlines in both fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms of solid in porous layer, and average Nusselt number.

Keywords: Unsteady natural convection, Thermal non-equilibrium model, Darcy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
368 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, isotropic, steady-state, thermal gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
367 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
366 Use of Cellulosic Fibres in Double Layer Porous Asphalt

Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael

Abstract:

Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.

Keywords: Binder drainage, cellulosic fibres, permanent deformation, porous asphalt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
365 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
364 Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid

Authors: Ezzah Liana Ahmad Fauzi, Syakila Ahmad, Ioan Pop

Abstract:

The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter.

Keywords: boundary layer, mixed convection, nanofluid, porous medium, vertical cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
363 Fatigue and Stiffness Analysis of Rotating Drum Composter

Authors: Remigijus Janulionis, Marijus Šeporaitis, Aleksandra Legha, Raimundas Ručys

Abstract:

All types of farms have a waste problem. Livestock farms have huge amounts of manure and vegetable farms have to deal with inedible parts of vegetables or rotten, damaged and unacceptable vegetable waste. All of this waste needs to be disposed of safely, ecologically, and as quickly as possible. One of the options is composting using bioreactors, which are rotating drum composters. This type of composting allows biodegradable waste to be disposed of quickly and in an environmentally friendly manner, turning it into a useful product such as soil fertilizer or livestock bedding. This paper presents the fatigue and stiffness analysis of a rotating drum composter. The analysis was performed using a 3D finite element model. It was found that the analyzed composter design has good mechanical strength, good fatigue strength for a cylinder, and acceptable fatigue strength for tire rings. The deformation analysis of the cylinder indicated that the front and rear door support mechanisms should allow the positioning angle to be changed to ensure tightness.

Keywords: 3D modeling, fatigue, Finite Element Method, Goodman’s diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130
362 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall

Authors: Laith Jaafer Habeeb

Abstract:

The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.

Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
361 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
360 Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

Authors: Motahar Reza, Anadi Sankar Gupta

Abstract:

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Keywords: Viscoelastic fluid, Flow past a porous plate, Heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
359 Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials

Authors: Meryem Kanzari, Rabah Boukhanouf, Hatem G. Ibrahim

Abstract:

Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.

Keywords: Indirect evaporative cooling, porous ceramic, sub-wet bulb temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4466
358 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet

Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi

Abstract:

This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.

Keywords: Activation code, internet, mobile agent, software developer, software products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
357 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: Finite difference method, natural convection, porous medium, scale analysis, thermal stratification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
356 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

Authors: Mukesh Kumar Awasth, Mohammad Tamsir

Abstract:

The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
355 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi

Abstract:

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
354 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
353 XML Data Management in Compressed Relational Database

Authors: Hongzhi Wang, Jianzhong Li, Hong Gao

Abstract:

XML is an important standard of data exchange and representation. As a mature database system, using relational database to support XML data may bring some advantages. But storing XML in relational database has obvious redundancy that wastes disk space, bandwidth and disk I/O when querying XML data. For the efficiency of storage and query XML, it is necessary to use compressed XML data in relational database. In this paper, a compressed relational database technology supporting XML data is presented. Original relational storage structure is adaptive to XPath query process. The compression method keeps this feature. Besides traditional relational database techniques, additional query process technologies on compressed relations and for special structure for XML are presented. In this paper, technologies for XQuery process in compressed relational database are presented..

Keywords: XML, compression, query processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
352 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum

Authors: Won Yeol Choi, Sangmo Kang

Abstract:

The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.

Keywords: Fluid viscosity, hydrodynamics, similitude, propulsive force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
351 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects

Authors: Y. Outaleb, K. Bouhadef, O. Rahli

Abstract:

Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.

Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
350 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components

Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich

Abstract:

This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.

Keywords: Hard disk drive, line balancing, simulation, Arena program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
349 Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry

Authors: S. Soommat, S. Patamatamkul, T. Prempridi, M. Sritulyachot, P. Ineure, S. Yimman

Abstract:

Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.

Keywords: Slider process, Defective diagnosis and Data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173