Search results for: periodic solutions.
1544 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method
Authors: Anjali Verma, Ram Jiwari, Jitender Kumar
Abstract:
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.
Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391543 The Pell Equation x2 − (k2 − k)y2 = 2t
Authors: Ahmet Tekcan
Abstract:
Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k2 - k. In the first section we give some preliminaries from Pell equations x2 - dy2 = 1 and x2 - dy2 = N, where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x2 - dy2 = 1 and x2 - dy2 = 2t. We give a method for the solutions of these equations. Further we derive recurrence relations on the solutions of these equationsKeywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751542 Periodic Topology and Size Optimization Design of Tower Crane Boom
Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng
Abstract:
In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.
Keywords: Tower crane boom, topology optimization, size optimization, periodic, soft kill option, optimization criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13431541 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation
Authors: Mohammad Najafi, Ali Jamshidi
Abstract:
We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.
Keywords: Hirota bilinear method, potential Kadomtsev-Petviashvili equation, multiple soliton solutions, multiple singular soliton solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13731540 Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays
Authors: Yongzhi Liao
Abstract:
By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.
Keywords: positive almost periodic solution, Lotka-Volterra, neural networks, Banach fixed point theorem, harvesting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251539 Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
Authors: Benshi Zhu
Abstract:
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.Keywords: Discrete boundary value problems, nonsmoothcritical point theory, positive solutions, semipositone, sub-super solutions method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13431538 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321537 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation
Authors: Olusheye Akinfenwa
Abstract:
We consider the development of an eight order Adam-s type method, with A-stability property discussed by expressing them as a one-step method in higher dimension. This makes it suitable for solving variety of initial-value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures. The methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. Numerical results obtained using the proposed block form reveals that it is highly competitive with existing methods in the literature.Keywords: Block Adam's type Method; Periodic Ordinary Differential Equation; Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841536 Frequency Domain Analysis for Hopf Bifurcation in a Delayed Competitive Web-site Model
Authors: Changjin Xu, Yusen Wu
Abstract:
In this paper, applying frequency domain approach, a delayed competitive web-site system is investigated. By choosing the parameter α as a bifurcation parameter, it is found that Hopf bifurcation occurs as the bifurcation parameter α passes a critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.Keywords: Web-site system, stability, Nyquist criterion, Hopf bifurcation, frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651535 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871534 The Pell Equation x2 − Py2 = Q
Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan
Abstract:
Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.Keywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061533 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF
Authors: T. C. Manjunath, B. Bandyopadhyay
Abstract:
This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21331532 HOPF Bifurcation of a Predator-prey Model with Time Delay and Habitat Complexity
Authors: Li Hongwei
Abstract:
In this paper, a predator-prey model with time delay and habitat complexity is investigated. By analyzing the characteristic equations, the local stability of each feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By choosing the sum of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main theoretical results.
Keywords: Predator-prey system, delay, habitat complexity, HOPF bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18691531 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model
Authors: Vladislav N. Dumachev, Vladimir A. Rodin
Abstract:
By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractalsKeywords: bifurcation, chaos, dynamics of populations, fractals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12771530 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11501529 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13691528 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251527 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates
Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib
Abstract:
The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating that the flow equations possess an infinite set of solutions.
Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34481526 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain
Authors: Changjin Xu
Abstract:
In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.
Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041525 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.
Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991524 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method
Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian
Abstract:
This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701523 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere
Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada
Abstract:
We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.Keywords: rotating sphere, two-dimensional flow, bifurcationstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501522 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451521 Self-Organization-Based Approach for Embedded Real-Time System Design
Authors: S. S. Bendib, L. W. Mouss, S. Kalla
Abstract:
This paper proposes a self-organization-based approach for real-time systems design. The addressed issue is the mapping of an application onto an architecture of heterogeneous processors while optimizing both makespan and reliability. Since this problem is NP-hard, a heuristic algorithm is used to obtain efficiently approximate solutions. The proposed approach takes into consideration the quality as well as the diversity of solutions. Indeed, an alternate treatment of the two objectives allows to produce solutions of good quality while a self-organization approach based on the neighborhood structure is used to reorganize solutions and consequently to enhance their diversity. Produced solutions make different compromises between the makespan and the reliability giving the user the possibility to select the solution suited to his (her) needs.Keywords: Embedded real-time systems design, makespan, reliability, self-organization, compromises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4581520 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22181519 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the crosslinked polyethylene (XLPE) in the presence of the applied electric field.
Keywords: Ionic Solutions, Water Treeing, Water treeing Expansion, Cross-linked Polyethylene (XLPE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28801518 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30031517 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.
Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13201516 Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal that the HPM with the enhancement of PA is a very effective, convenient and quite accurate to such types of partial differential equations.Keywords: Homotopy perturbation method, Padé approximants, cubic Boussinesq equation, modified Boussinesq equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45771515 Molecular Dynamics Simulation of Liquid-Vapor Interface on the Solid Surface Using the GEAR-S Algorithm
Authors: D. Toghraie, A. R. Azimian
Abstract:
In this paper, the Lennard -Jones potential is applied to molecules of liquid argon as well as its vapor and platinum as solid surface in order to perform a non-equilibrium molecular dynamics simulation to study the microscopic aspects of liquid-vapor-solid interactions. The channel is periodic in x and y directions and along z direction it is bounded by atomic walls. It was found that density of the liquids near the solid walls fluctuated greatly and that the structure was more like a solid than a liquid. This indicates that the interactions of solid and liquid molecules are very strong. The resultant surface tension, liquid density and vapor density are found to be well predicted when compared with the experimental data for argon. Liquid and vapor densities were found to depend on the cutoff radius which induces the use of P3M (particle-particle particle-mesh) method which was implemented for evaluation of force and surface tension.Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015