Search results for: left neighbor.
267 A Blind Digital Watermark in Hadamard Domain
Authors: Saeid Saryazdi, Hossein Nezamabadi-pour
Abstract:
A new blind gray-level watermarking scheme is described. In the proposed method, the host image is first divided into 4*4 non-overlapping blocks. For each block, two first AC coefficients of its Hadamard transform are then estimated using DC coefficients of its neighbor blocks. A gray-level watermark is then added into estimated values. Since embedding watermark does not change the DC coefficients, watermark extracting could be done by estimating AC coefficients and comparing them with their actual values. Several experiments are made and results suggest the robustness of the proposed algorithm.
Keywords: Digital Watermarking, Image watermarking, Information Hiden, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262266 Biometric Authentication Using Fast Correlation of Near Infrared Hand Vein Patterns
Authors: Mohamed Shahin, Ahmed Badawi, Mohamed Kamel
Abstract:
This paper presents a hand vein authentication system using fast spatial correlation of hand vein patterns. In order to evaluate the system performance, a prototype was designed and a dataset of 50 persons of different ages above 16 and of different gender, each has 10 images per person was acquired at different intervals, 5 images for left hand and 5 images for right hand. In verification testing analysis, we used 3 images to represent the templates and 2 images for testing. Each of the 2 images is matched with the existing 3 templates. FAR of 0.02% and FRR of 3.00 % were reported at threshold 80. The system efficiency at this threshold was found to be 99.95%. The system can operate at a 97% genuine acceptance rate and 99.98 % genuine reject rate, at corresponding threshold of 80. The EER was reported as 0.25 % at threshold 77. We verified that no similarity exists between right and left hand vein patterns for the same person over the acquired dataset sample. Finally, this distinct 100 hand vein patterns dataset sample can be accessed by researchers and students upon request for testing other methods of hand veins matching.Keywords: Biometrics, Verification, Hand Veins, PatternsSimilarity, Statistical Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507265 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.
Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423264 Hybrid Model Based on Artificial Immune System and Cellular Automata
Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi
Abstract:
The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.Keywords: Artificial Immune System, Cellular Automat, neighborhood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602263 On-line Lao Handwritten Recognition with Proportional Invariant Feature
Authors: Khampheth Bounnady, Boontee Kruatrachue, Somkiat Wangsiripitak
Abstract:
This paper proposed high level feature for online Lao handwritten recognition. This feature must be high level enough so that the feature is not change when characters are written by different persons at different speed and different proportion (shorter or longer stroke, head, tail, loop, curve). In this high level feature, a character is divided in to sequence of curve segments where a segment start where curve reverse rotation (counter clockwise and clockwise). In each segment, following features are gathered cumulative change in direction of curve (- for clockwise), cumulative curve length, cumulative length of left to right, right to left, top to bottom and bottom to top ( cumulative change in X and Y axis of segment). This feature is simple yet robust for high accuracy recognition. The feature can be gather from parsing the original time sampling sequence X, Y point of the pen location without re-sampling. We also experiment on other segmentation point such as the maximum curvature point which was widely used by other researcher. Experiments results show that the recognition rates are at 94.62% in comparing to using maximum curvature point 75.07%. This is due to a lot of variations of turning points in handwritten.
Keywords: Handwritten feature, chain code, Lao handwritten recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030262 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis
Abstract:
Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248261 A Method for Quality Inspection of Motors by Detecting Abnormal Sound
Authors: Tadatsugu Kitamoto
Abstract:
Recently, a quality of motors is inspected by human ears. In this paper, I propose two systems using a method of speech recognition for automation of the inspection. The first system is based on a method of linear processing which uses K-means and Nearest Neighbor method, and the second is based on a method of non-linear processing which uses neural networks. I used motor sounds in these systems, and I successfully recognize 86.67% of motor sounds in the linear processing system and 97.78% in the non-linear processing system.Keywords: Acoustical diagnosis, Neural networks, K-means, Short-time Fourier transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699260 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm
Authors: Essam Al Daoud
Abstract:
This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391259 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.
Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624258 Analysis of Lower Extremity Muscle Flexibility among Indian Classical Bharathnatyam Dancers
Authors: V. Anbarasi, David V Rajan, K. Adalarasu
Abstract:
Musculoskeletal problems are common in high performance dance population. This study attempts to identify lower extremity muscle flexibility parameters prevailing among bharatanatyam dancers and analyze if there is any significant difference exist between normal and injured dancers in flexibility parameters. Four hundred and one female dancers and 17 male dancers were participated in this study. Flexibility parameters (hamstring tightness, hip internal and external rotation and tendoachilles in supine and sitting posture) were measured using goniometer. Results of our study it is evident that injured female bharathnatyam dancers had significantly (p < 0.05) high hamstring tightness on left side lower extremity compared to normal female dancers. The range of motion for left tendoachilles was significantly (p < 0.05) high for the normal female group when compared to injured dancers during supine lying posture. Majority of the injured dancers had high hamstring tightness that could be a possible reason for pain and MSDs.Keywords: External rotation (ER), Internal rotation (IR), Musculoskeletal disorder (MSD), Range of motion (ROM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5152257 Fuzzy Based Visual Texture Feature for Psoriasis Image Analysis
Authors: G. Murugeswari, A. Suruliandi
Abstract:
This paper proposes a rotational invariant texture feature based on the roughness property of the image for psoriasis image analysis. In this work, we have applied this feature for image classification and segmentation. The fuzzy concept is employed to overcome the imprecision of roughness. Since the psoriasis lesion is modeled by a rough surface, the feature is extended for calculating the Psoriasis Area Severity Index value. For classification and segmentation, the Nearest Neighbor algorithm is applied. We have obtained promising results for identifying affected lesions by using the roughness index and severity level estimation.
Keywords: Fuzzy texture feature, psoriasis, roughness feature, skin disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114256 Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
Authors: Kozak K, M. Kozak, K. Stapor
Abstract:
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed kernel weight function aims to combine properties of graphical structure and molecule descriptors of screening compounds. We apply the modified knn method on several experimental data from biological screens. The experimental results confirm the effectiveness of the proposed method.
Keywords: biological screening, kernel methods, KNN, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273255 An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism
Authors: Anthony Bawa, Konstantinos Banitsas
Abstract:
Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and five control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8 years, weight 65 ± 8 kg, and height 176 ± 8 cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises.
Keywords: Muscular, imbalances, rheumatism, hip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162254 Topological Properties of an Exponential Random Geometric Graph Process
Authors: Yilun Shang
Abstract:
In this paper we consider a one-dimensional random geometric graph process with the inter-nodal gaps evolving according to an exponential AR(1) process. The transition probability matrix and stationary distribution are derived for the Markov chains concerning connectivity and the number of components. We analyze the algorithm for hitting time regarding disconnectivity. In addition to dynamical properties, we also study topological properties for static snapshots. We obtain the degree distributions as well as asymptotic precise bounds and strong law of large numbers for connectivity threshold distance and the largest nearest neighbor distance amongst others. Both exact results and limit theorems are provided in this paper.Keywords: random geometric graph, autoregressive process, degree, connectivity, Markovian, wireless network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457253 Hybrid of Hunting Search and Modified Simplex Methods for Grease Position Parameter Design Optimisation
Authors: P. Luangpaiboon, S. Boonhao
Abstract:
This study proposes a multi-response surface optimization problem (MRSOP) for determining the proper choices of a process parameter design (PPD) decision problem in a noisy environment of a grease position process in an electronic industry. The proposed models attempts to maximize dual process responses on the mean of parts between failure on left and right processes. The conventional modified simplex method and its hybridization of the stochastic operator from the hunting search algorithm are applied to determine the proper levels of controllable design parameters affecting the quality performances. A numerical example demonstrates the feasibility of applying the proposed model to the PPD problem via two iterative methods. Its advantages are also discussed. Numerical results demonstrate that the hybridization is superior to the use of the conventional method. In this study, the mean of parts between failure on left and right lines improve by 39.51%, approximately. All experimental data presented in this research have been normalized to disguise actual performance measures as raw data are considered to be confidential.Keywords: Grease Position Process, Multi-response Surfaces, Modified Simplex Method, Hunting Search Method, Desirability Function Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686252 Smart Grids Cyber Security Issues and Challenges
Authors: Imen Aouini, Lamia Ben Azzouz
Abstract:
The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.Keywords: Smart grids, smart meters, home area network, neighbor area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3944251 Treatment or Re-Victimizing the Victims
Authors: Juliana Panova
Abstract:
Severe symptoms, such as dissociation, depersonalization, self-mutilation, suicidal ideations and gestures, are the main reasons for a person to be diagnosed with Borderline Personality Disorder (BPD) and admitted to an inpatient Psychiatric Hospital. However, these symptoms are also indicators of a severe traumatic history as indicated by the extensive research on the topic. Unfortunately patients with such clinical presentation often are treated repeatedly only for their symptomatic behavior, while the main cause for their suffering, the trauma itself, is usually left unaddressed therapeutically. All of the highly structured, replicable, and manualized treatments lack the recognition of the uniqueness of the person and fail to respect his/her rights to experience and react in an idiosyncratic manner. Thus the communicative and adaptive meaning of such symptomatic behavior is missed. Only its pathological side is recognized and subjected to correction and stigmatization, and the message that the person is damaged goods that needs fixing is conveyed once again. However, this time the message would be even more convincing for the victim, because it is sent by mental health providers, who have the credibility to make such a judgment. The result is a revolving door of very expensive hospitalizations for only a temporary and patchy fix. In this way the patients, once victims of abuse and hardship are left invalidated and thus their re-victimization is perpetuated in their search for understanding and help. Keywordsborderline personality disorder (BPD), complex PTSD, integrative treatment of trauma, re-victimization of trauma victims.
Keywords: borderline personality disorder (BPD), complex PTSD, integrative treatment of trauma, re-victimization of trauma victims.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796250 Reversible Watermarking for H.264/AVC Videos
Authors: Yih-Chuan Lin, Jung-Hong Li
Abstract:
In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.Keywords: Reversible data hiding, H.264/AVC standard, CAVLC, Histogram shifting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030249 Asbestos and Other Man-Made Disasters
Authors: David J. Russell SC
Abstract:
Widespread use of asbestos over the last century has left a terrible legacy of lung disease. Doctors knew of the health risks long ago, but almost nothing was done to protect workers and the public. Some aspects of nanotechnology may have risks similar to asbestos.
Keywords: Asbestos, causation, nanotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355248 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132247 A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients
Authors: Mohsen A. Bakouri, Andrey V. Savkin, Abdul-Hakeem H. Alomari, Robert F. Salamonsen, Einly Lim, Nigel H. Lovell
Abstract:
Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller
Keywords: robust control system, discrete-sliding mode, left ventricularle assist devicse, pulsatility index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870246 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658245 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: Classification, data mining, evaluation measures, groundwater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594244 Assessment of the Impact of Regular Pilates Exercises on Static Balance in Healthy Adult Women: Preliminary Report
Authors: Anna Słupik, Krzysztof Jaworski, Anna Mosiołek, Dariusz Białoszewski
Abstract:
Background: Maintaining the correct body balance is essential in the prevention of falls in the elderly, which is especially important for women because of postmenopausal osteoporosis and the serious consequences of falls. One of the exercise methods which is very popular among adults, and which may affect body balance in the positive way is the Pilates method. The aim of the study was to evaluate the effect of regular Pilates exercises on the ability to maintain body balance in static conditions in adult healthy women. Material and methods: The study group consisted of 20 healthy women attending Pilates twice a week for at least 1 year. The control group consisted of 20 healthy women physically inactive. Women in the age range from 35 to 50 years old without pain in musculoskeletal system or other pain were only qualified to the groups. Body balance was assessed using MatScan VersaTek platform with Sway Analysis Module based on Matscan Clinical 6.7 software (Tekscan Inc., U.S.A). The balance was evaluated under the following conditions: standing on both feet with eyes open, standing on both feet with eyes closed, one-leg standing (separately on the right and left foot) with eyes open. Each test lasted 30 seconds. The following parameters were calculated: estimated size of the ellipse of 95% confidence, the distance covered by the Center of Gravity (COG), the size of the maximum shift in the sagittal and frontal planes and load distribution between the left and right foot, as well as between rear- and forefoot. Results: It was found that there is significant difference between the groups in favor of the study group in the size of the confidence ellipse and maximum shifts of COG in the sagittal plane during standing on both feet, both with the eyes open and closed (p <0.05). While standing on one leg both on the right and left leg, with eyes opened there was a significant difference in favor of the study group, in terms of the size of confidence ellipse, the size of the maximum shifts in the sagittal and in the frontal plane (p <0.05). There were no differences between the distribution of load between the right and left foot (standing with both feet), nor between fore- and rear foot (in standing with both feet or one-leg). Conclusions: 1. Static balance in women exercising regularly by Pilates method is better than in inactive women, which may in the future prevent falls and their consequences. 2. The observed differences in maintaining balance in frontal plane in one-leg standing may indicate a positive impact of Pilates exercises on the ability to maintain global balance in terms of reduced support surface. 3. Pilates method can be used as a form preventive therapy for all people who are expected to have problems with body balance in the future, for example in chronic neurological disorders or vestibular problems. 4. The results have shown that, further prospective randomized research on a larger and more representative group is needed.Keywords: Balance exercises, body balance, Pilates, pressure distribution, women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799243 Spiral Cuff for Fiber-Diameter Selective VNS
Abstract:
In this paper we present the modeling, design, and experimental testing of a nerve cuff multi-electrode system for diameter-selective vagus nerve stimulation. The multi-electrode system contained ninety-nine platinum electrodes embedded within a self-curling spiral silicone sheet. The electrodes were organized in a matrix having nine parallel groups, each containing eleven electrodes. Preliminary testing of the nerve cuff was performed in an isolated segment of a swinish left cervical vagus nerve. For selective vagus nerve stimulation, precisely defined current quasitrapezoidal, asymmetric and biphasic stimulating pulses were applied to preselected locations along the left vagus segment via appointed group of three electrodes within the cuff. Selective stimulation was obtained by anodal block. However, these pulses may not be safe for a long-term application because of a frequently used high imbalance between the cathodic and anodic part of the stimulating pulse. Preliminary results show that the cuff was capable of exciting A and B-fibres, and, that for a certain range of parameters used in stimulating pulses, the contribution of A-fibres to the CAP was slightly reduced and the contribution of B-fibres was slightly larger. Results also showed that measured CAPs are not greatly influenced by the imbalance between a charge Qc injected in cathodic and Qa in anodic phase of quasitrapezoidal, asymmetric and biphasic pulses.Keywords: Vagus nerve stimulation, multi-electrode nerve cuff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678242 Generation of Electro-Encephalography Readiness Potentials by Intention
Authors: Seokbeen Lim, Gilwon Yoon
Abstract:
The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention.
Keywords: Readiness potential, auditory stimuli, event-related potential, electroencephalography, oddball task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031241 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies
Authors: Moustafa A. Bani-Hasan, Yasser M. Kadah, Fatma M. El-Hefnawi
Abstract:
An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).Keywords: Arrhythmias analysis, electrocardiogram, featureextraction, statistical classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074240 Investigation on Feature Extraction and Classification of Medical Images
Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011239 Persian Printed Numerals Classification Using Extended Moment Invariants
Authors: Hamid Reza Boveiri
Abstract:
Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918238 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791